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PirePred is a genetic interpretation tool used for a variety of medical conditions investigated in
newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic
and structural data on 58 genes/proteins associated with medical conditions frequently investigated in
the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an
optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as
pathogenic, benign, or of uncertain significance. PirePred predictions for variants of clear clinical
significance are better than those of any of the individual predictors considered (based on accuracy,
sensitivity, and negative predictive value) or are among the best ones (for positive predictive value and
Matthews correlation coefficient). PirePred predictions also outperform the comparable in silico pre-
dictions offered as supporting evidence, according to American College of Medical Genetics and Ge-
nomics guidelines, by VarSome and Franklin. Also, PirePred has very high prediction coverage. To
facilitate the molecular interpretation of the missense, nonsense, and frameshift variants in ClinVar, the
changing amino acid residue is displayed in its structural context, which is analyzed to provide
functional clues. PirePred is an accurate, robust, and easy-to-use tool for clinicians involved in neonatal
screening programs and for researchers of related diseases. The server is freely accessible and provides a
user-friendly gateway into the structural/functional consequences of genetic variants at the protein
level. (J Mol Diagn 2022, 24: 406e425; https://doi.org/10.1016/j.jmoldx.2022.01.005)
Newborn screening is widely used for the early detection of
different conditions that can evolve to produce severe health
problems, including death. Newborn screening programs
began in developed countries in the mid-1960s,1 and
although they have since been extended to most countries,
there are still vast regions with a poor or no implementa-
tion.2 The number of tested conditions greatly varies from
country to country, with the most comprehensive programs
including >50 conditions. Screening is commonly based on
a blood sample taken from the newborn, which is analyzed
using mass spectrometry to identify metabolites with
anomalous concentrations.3 In some cases, the analyses
include some targeted genetic screening to detect pathogenic
variants in the newborn. When metabolic conditions are
detected, the suspected genes may also be sequenced to
identify variants that could help to explain the detected
condition, to improve diagnosis, or to guide the treatment.
Implementation of direct genetic screening programs are
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NBS Variants in Structural Context
likely in the not too distant future, which might flood hos-
pital genetics and pediatrics departments with new variants
to interpret.4

The interpretation of genetic variants may pose different
degrees of difficulty. When the detected variant has been
described and its occurrence and clinical significance have
been carefully annotated in a genetic variants database (eg,
ClinVar5), the task may be easy. In many cases, however, the
variant is poorly characterized or has been found for the first
time, and its clinical significance is not firmly established. In
the latter cases of variants of uncertain significance (VUSs),
the interpretation of the variant involves predicting its
phenotypic outcome using bioinformatics tools. For the
simpler case of single-nucleotide variants (SNVs) related to
monogenic disorders, a multiplicity of pathogenicity pre-
dictors6 are available for researchers and clinicians to antic-
ipate the probable phenotypic consequence of the variation.
However, the global accuracy of such predictors seems to
have reached a plateau at approximately 85% for binary
(pathogenic/benign) predictions.7 In addition and not infre-
quently, contradicting predictions are provided for the same
variant by different predictors,8 which has stimulated the
recommendation of obtaining several outcomes; however,
these outcomes should only be trusted in cases in which
highly or totally coincidental predictions are gathered.9

Sometimes a number of predictions on the same variant are
used to generate a consensus prediction applying combina-
tion rules, such as a majority vote. For clinicians who are not
necessarily expert bioinformaticians, dealing with the gen-
eration and analysis of several predictions on the same
variant poses considerable difficulties.

Genetic variations in protein coding regions are respon-
sible for the synthesis of proteins with changes in the amino
acid sequence. In the simple and most frequent case of
missense SNVs,10 the protein product will bear one amino
acid change whose location in the three-dimensional structure
of the protein will determine11e13 whether the protein will be
unstable or aggregation prone and will display reduced af-
finity for substrates or partner proteins, reduced catalytic
activity, or any other feature detrimental to its biological
activity. Visualizing and analyzing the effect of the variation
at the protein structural level is not a guarantee for a precise
molecular interpretation, but it can be of help. Further
development of more accurate predictors is envisioned when
simulation methods providing detailed structural analysis can
be incorporated to existing machine learningebased pre-
dictors.14 However, incorporating even simple structural
analysis methods to the practice of genetic interpretation is
hampered, on the one hand, by some knowledge gaps that
exist between the genetics and structural biology fields and,
on the other, because detailed structural information on the
concerned gene product, usually a protein, may be missing or
incomplete. The experimentally determined structural
coverage of the human proteome constitutes only 18% of the
human protein residues, which can be increased to 50% by
homology modeling (https://swissmodel.expasy.org/
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repository/species/9606, last accessed May 22, 2021).
Recent massive modelling of the human proteome15 may
further increase this structural coverage.

Newborn screening focuses on several dozen conditions,
which are often monogenic and typically associated with
well-known genes that code for enzymes for which struc-
tural information exists or can be obtained in most cases
through homology modeling. This article describes PirePred
(https://pirepred.bifi.es, last accessed November 20, 2021),
an accurate and comprehensive online tool for the easy
interpretation of SNVs (missense, nonsense, and
frameshift) in 58 genes associated with the principal
conditions investigated in newborn screening programs.16

PirePred aligns with American College of Medical Ge-
netics and Genomics (ACMG) guidelines9 by providing
computational supporting evidence for the interpretation of
variants. PirePred combines 15 individual predictors and
readily provides, for any nonsynonymous SNV in those 58
genes, a consensus prediction (benign, VUS, or pathogenic)
that outperforms the individual predictors in accuracy and in
several other relevant quality prediction metrics. Moreover,
PirePred provides updated structural models (X-ray or ho-
mology) for the corresponding proteins on which any
variant described in ClinVar can be readily displayed and
further analyzed in the structural context.

Materials and Methods

Server Implementation

PirePred uses Bootstrap version 4.0 (Bootstrap, San Fran-
cisco, CA; https://getbootstrap.com) for the presentation in
the client side (front-end). AJAX technology allows the
implementation of requests to the server (gene, protein, or
disease) by the user. In the back-end, PHP version 7.3
(Coretechs, Kensington, MD; https://www.php.net/
downloads.php) connects (in real time) with the ClinVar5

API and obtains the data query in XML, which is
formatted and displayed in a list. The protein structure related
to the selected entity (gene, protein, or disease) is shown
through the open-source JavaScript viewer JSmol version 14.
30.0 (Jmol Development Team).17 Displayed predictions for
all the real and potential variants of a selected gene caused by
an SNV are obtained from the dbNFSP version 4.1a re-
pository.6 The whole information is returned to the user
through the interface. Figure 1 includes a general scheme of
the PirePred server implementation. Moreover, Supplemental
Table S1 shows PirePred compatibility with the most
extended browsers used along with the most common oper-
ating systems. An updated browser is recommended, and
JavaScript must not be disabled.

Protein Structures and Models

The protein structures depicted with the JSMol version
14.30.0 molecular viewer17 after selecting a gene, protein,
407
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Figure 1 PirePred server’s scheme. Overview of the PirePred web server implementation and the involved technologies.
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or disease in the PirePred home screen are i) experimentally
determined structures available in the Protein Data Bank
(PDB) and having a reasonable coverage of the gene
sequence, ii) single-template homology models obtained
through the SwissModel server or from its repository,18 iii)
single-template threading models obtained from i-Tasser
server,19 or iv) combined structures built by joining an
experimentally solved fragment of the protein with a
modeled fragment of its unsolved region. For the latter case,
the modeled fragments were obtained through the multi-
template homology modeling server GPCR-SSFE version
2.020 or through the SwissModel18 (Table 1). These com-
bined models were manually built by following structure
alignment (of common solved regions) and distance criteria
while avoiding intermonomer and intramonomer clashes
according to the solved part of the biological assembly
(SLC25A13 gene). For the special case of the TSHR’s
combined structure (PDB 2XWT plus a GPCR-SSFE mul-
titemplate homology modeling) (Table 1), because there is
no overlapping region between the combined domains, a
threading model (i-Tasser) of the whole thyroid-stimulating
hormone receptor protein was first obtained, which was
used as a geometrical guide for the interdomain distance to
properly join the two domains.

Models retrieved from the SwissModel repository were
chosen from the list available for each gene not only based
on the criterion of having the highest possible coverage and
Qmean (integrated quality parameter) but also looking for a
template that matched the right oligomerization state
predicted or stated for the protein. The same criterion was
applied for selecting the best templates for the models
built de novo through this server. Except for the
thyroid-stimulating hormone receptor protein, all the
408
modeled structures were initially modeled with both
SwissModel and i-Tasser, and the models’ quality tested
using Molprobity.21 Table 1 specifies for each gene the
origin of the associated protein structure visualized with
JSmol. More detailed information about every Structure/
model is given in an ad hoc button included in PirePred
(see Results).

Structural Context Analysis

Solvent accessible surface areas (SASAs) were calculated
for the multimeric and monomeric forms of each protein
using an ad hoc DSSP22-based script. The monomeric form
of a multimeric model is obtained by isolating the chain of
interest. Relative SASAs for each residue are expressed as
the percentage of exposure in the folded protein relative to
the mean exposure of that residue type according to a
database of folded proteins23 (the 5% increase in SASA
values commonly issued by DSSP, as reported by Estrada
et al,23 was corrected for the calculation of the relative
exposure). Moreover, to predict whether a residue is on the
multimeric interaction surface, the SASA value was first
obtained for the given residue in the multimeric assembly
and then compared with that obtained for the residue in the
monomeric form. Thus, if the quotient between the multi-
meric and monomeric SASA values is <0.9, the residue is
considered to be buried in the multimeric form and, there-
fore, to be part of the interaction surface. In addition, the
location of the variant in a catalytic or functionally relevant
site is checked up by searching the affected residue in the
SITE annotations of the original PDB file (if available) and
in the Catalytic Site Atlas24 (https://www.ebi.ac.uk/
thornton-srv/m-csa/, last accessed May 1, 2021).
jmdjournal.org - The Journal of Molecular Diagnostics
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NBS Variants in Structural Context
Variants Data Set

The data set used to train and test the PirePred consensus
classifying algorithm derives from ClinVar.5 To conform
the data set, all missense and nonsense SNVs in the genes of
interest (10,052 variants) were considered. Among them,
those with at least one star of review status annotation in
ClinVar (7895 variants) were initially retrieved (Table 2)
and, according to their annotated effects, were assigned to a
ternary classification. Thus, variants annotated as benign or
likely benign in ClinVar (270 variants) were assigned to the
benign group, whereas those annotated as pathogenic or
likely pathogenic (2154 variants) were assigned to the
Pathogenic group. The 2424 variants in either of these two
groups jointly conform the data set used for training and
testing as will be detailed. On the other hand, variants an-
notated in ClinVar as conflicting interpretations of patho-
genicity or uncertain significance were not used further for
training or testing.

Training and Testing a Consensus Classifier for
Missense and Nonsense SNVs

For the PirePred consensus classifier, the ClinVar annota-
tions for the variants in the training data set were compared
with the corresponding binary predictions issued by 15
pathogenicity predictors8,25e38 (Supplemental Table S2).
Initially, 18 pathogenicity predictors were considered based
on their performance. Those predictors are implemented in
the dbNFSP version 4.1a repository6 from where their pre-
dictions were obtained. Four of these 18 predictors (MVP,34

CADD,38 REVEL,32 and MutPred33) do not issue binary
predictions but rather scores. Their scores were converted
into binary predictions by selecting thresholds that maxi-
mized the Matthews correlation coefficient (MCC) value of
the binary predictions obtained on the training data set. The
external validation group was omitted (Figure 2), whereas
accuracy, sensitivity, and positive predictive value (PPV)
were kept at >90% of their maximum value (Supplemental
Figure S1). Threshold values of 1000 and 1400 were tried
for each predictor (Supplemental Table S3) to select the
final ones (0.5, 0.6, 0.88, and 3.0, respectively)
(Supplemental Table S4). For the remaining 14 categorical
predictors, only benign and pathogenic predictions were
taken into account (VUS or unavailable predictions dis-
carded). To further refine the initial selection of 18 pre-
dictors, their individual and relative performances were
compared. For this purpose, a correlation matrix
(Supplemental Figure S2) was obtained based on the pre-
diction scores issued for all possible variants of the 58 genes
analyzed in PirePred. FATHMM39 was discarded because
of the low correlation shown with most other predictors
(Supplemental Figure S2). MetaLR8 and BayesDel40 were
also discarded to avoid redundancy because they were
highly correlated with MetaSVM8 (r Z 0.92) and REVEL32

(rZ 0.92), respectively. After this refinement, 15 predictors
The Journal of Molecular Diagnostics - jmdjournal.org
(Supplemental Table S2) remain. They issue the binary
predictions that are taken by the PirePred consensus
classifier.

PirePred provides, using a modified version of the ma-
jority vote algorithm, a ternary consensus classification of
variants (benign, VUS, or pathogenic). The classification is
based on the fraction of benign predictions issued by the 15
predictors for a given variant, which is used to classify the
variant by means of two classifying thresholds. A lower
threshold, pathogenic-to-VUS, is used to separate the vari-
ants that will be classified as pathogenic from the rest,
whereas a VUS-to-benign higher threshold is used to
separate the variants that will be classified as benign from
the rest. Variants getting a fraction of benign predictions
between the two thresholds or equaling one of them will be
classified as VUS. The selection of the best values for the
pathogenic-to-VUS and VUS-to-benign thresholds used to
classify missense variants has been performed through
heatmap analysis of the following quality metrics: PPV,
negative predictive value (NPV), MCC, accuracy, sensi-
tivity, specificity, and coverage. For nonsense variants, the
selection of the pathogenic-to-VUS and VUS-to-benign
thresholds did not require heatmap analysis (further details
in Results).

For the purpose of training the classifier and to try to
detect potential overfitting, the missense variants of the
training data set (Table 2) were split into five groups of
approximately equal size (Figure 2), each having the same
ratio of benign and pathogenic variants. Variants that affect
a same residue were always kept in the same group.
Groups 1 to 4 were used for training and evaluation tries
[learning curve (LC) and leave one out (LOO)], whereas
group 5 was omitted and only used to perform an external
validation (EV) of the final classifier. First, to ensure that
the size of the training data set is enough to represent the
variability of the whole data set, the dependence of the
thresholds and of the quality metrics on the size of the
training data set was analyzed. For this purpose, the model
was trained using one (LC 1), two (LC 2), or three groups
(LC 3) and the quality metrics described above determined
on the remaining three, two, or one group, respectively
(Supplemental Table S5). Second, to assess the goodness
of the model and the variability of the quality metrics with
the composition of the training and testing data sets, an
LOO analysis was performed (LOO 1 to LOO 4)
(Figure 2). In this way, quality metrics (Supplemental
Table S5) were obtained for each of the four testing
groups, after having used the corresponding other three for
training. Finally, after having selected the pathogenic-to-
VUS and VUS-to-benign thresholds, the same metrics
were evaluated on the external validation group (fifth
group) to ensure that they are consistent with the values
and variability previously determined in the LOO analysis
(Supplemental Table S5). Selection of the pathogenic-to-
VUS and VUS-to-benign thresholds for nonsense variants
is described in Results. As for frameshift variants, most of
409
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Table 1 Genes, Related Entries in Relevant Databases, and Details on the Associated Protein Structures Depicted in PirePred

Gene
Ensembl gene set
entry*

Associated
protein
UniProt
entryy

Associated
disease
OMIM entryz

Current ClinVar
SNVsx (missense/
nonsense/
frameshift), n

Protein structure displayed in JSmol
(PDB or model template/coverage){

ABCD4 ENSG00000119688 O14678 614857 60/1/4 Cryo-EM structure (PDB: 6JBJ/93%)
ACADM ENSG00000117054 P11310 201450 151/16/35 X-ray structure (PDB: 4P13*/92%)
ACADS ENSG00000122971 P16219 201470 108/8/18 X-ray structure (PDB: 2VIG/92%)
ACADSB ENSG00000196177 P45954 610006 41/4/2 X-ray structure (PDB: 2JIF/88%)
ACADVL ENSG00000072778 P49748 201475 358/27/87 X-ray structure (PDB: 2UXW/86%)
ACAT1 ENSG00000075239 P24752 203750 100/8/26 X-ray structure (PDB: 2IB8/92%)
ACSF3 ENSG00000176715 Q4G176 614265 96/27/19 SwissModel st-HM (template PDB:

4GXR.A/93%)
ARG1 ENSG00000118520 P05089 207800 62/8/21 X-ray structure (PDB: 3GMZ/98%)
ASL ENSG00000126522 P04424 207900 105/18/14 X-ray structure (PDB: 1K62*/97%)
ASS1 ENSG00000130707 P00966 215700 118/13/19 X-ray structure (PDB: 2NZ2/98%)
BCKDHA ENSG00000248098 P12694 248600 91/23/20 X-ray structure (PDB: 1OLX/88%)
BCKDHB ENSG00000083123 P21953 248600 113/23/30 X-ray structure (PDB: 1OLX/85%)
BTD ENSG00000169814 P43251 253260 210/28/52 SwissModel st-HM (template PDB:

4CYF.A/90%)
CBS ENSG00000160200 P35520 236200 213/18/22 X-ray structure (PDB: 4L3V/90%)
CFTR ENSG00000001626 Q20BH0 219700 1045/225/259 EM structure (PDB: MSM*/79%)
CPT1A ENSG00000110090 P50416 255120 103/21/9 SwissModel st-HM (template PDB:

2H3W.A/78%)
CPT1B ENSG00000205560 Q92523 601987 1/0/0 SwissModel st-HM (template PDB:

1T7N.A/78%)
CPT1C ENSG00000169169 Q8TCG5 616282 37/0/2 SwissModel st-HM (template PDB:

1T7N.A/75%)
CPT2 ENSG00000157184 P23786 255110 196/28/54 SwissModel st-HM (template PDB:

4EP9.A/95%)
CYP11B1 ENSG00000160882 P15538 202010 92/17/17 X-ray structure (PDB: 6M7X/92%)
CYP17A1 ENSG00000148795 P05093 202110 42/9/8 X-ray structure (PDB: 6CIZ/92%)
CYP21A2 ENSG00000231852 P08686 201910 74/7/13 X-ray structure (PDB: 4Y8W*/89%)
DBT ENSG00000137992 P11182 248600 61/20/15 SwissModel st-HM (template PDB:

2IHW.Q-X/49%)
ETFA ENSG00000140374 P13804 231680 40/5/5 X-ray structure (PDB: 1EFV/94%)
ETFB ENSG00000105379 P38117 231680 27/1/2 X-ray structure (PDB: 1EFV/99%)
ETFDH ENSG00000171503 Q16134 231680 143/11/21 SwissModel st-HM (template PDB:

2GMH.A/94%)
FAH ENSG00000103876 P16930 276700 91/20/20 SwissModel st-HM (template PDB:

2HZY.A/99%)
FCGR2A ENSG00000143226 P12318 152700 3/1/0 X-ray structure (PDB: 1H9V*/54%)
GALT ENSG00000213930 P07902 230400 262/37/40 X-ray structure (PDB: 6GQD*/91%)
GCDH ENSG00000105607 Q92947 231670 178/27/19 X-ray structure (PDB: 2R0N/89%)
HADHA ENSG00000084754 P40939 609015, 609016 86/30/30 X-ray structure (PDB: 6DV2/95%)
HADHB ENSG00000138029 P55084 609015 56/3/4 X-ray structure (PDB: 6DV2/91%)
HBB ENSG00000244734 P68871 140700, 613985,

603902, 603903
424/30/123 X-ray structure (PDB: 1DXT/100%)

HCFC1 ENSG00000172534 P51610 309541 103/0/0 X-ray structure (PDB: 4GO6/10%)
HMGCL ENSG00000117305 P35914 246450 51/15/10 X-ray structure (PDB: 2CW6/91%)
HPD ENSG00000158104 P32754 276710 39/4/3 X-ray structure (PDB: 3ISQ/96%)
HSD3B2 ENSG00000203859 P26439 201810 24/12/4 SwissModel st-HM (template PDB:

3WJ7.A/96%)
IVD ENSG00000128928 P26440 243500 81/9/17 X-ray structure (PDB: 1IVH/92%)
LMBRD1 ENSG00000168216 Q9NUN5 277380 34/1/4 i-Tasser st-TM (template PDB:

3G5U.A/100%)
MCCC1 ENSG00000078070 Q96RQ3 210200 128/17/25 SwissModel st-HM (template PDB:

5CSL.A/92%)

(table continues)
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Table 1 (continued )

Gene
Ensembl gene set
entry*

Associated
protein
UniProt
entryy

Associated
disease
OMIM entryz

Current ClinVar
SNVsx (missense/
nonsense/
frameshift), n

Protein structure displayed in JSmol
(PDB or model template/coverage){

MCCC2 ENSG00000131844 Q9HCC0 210210 107/15/14 SwissModel st-HM (template PDB:
3U9R.F/95%)

MLYCD ENSG00000103150 O95822 248360 81/2/5 X-ray structure (PDB: 4F0X/92%)
MMAA ENSG00000151611 Q8IVH4 251100 65/24/20 X-ray structure (PDB: 2WWW/83%)
MMAB ENSG00000139428 Q96EY8 251110 72/7/12 X-ray structure (PDB: 2IDX/72%)
MMACHC ENSG00000132763 Q9Y4U1 277400 79/26/37 X-ray structure (PDB: 3SC0/84%)
MMADHC ENSG00000168288 Q9H3L0 277410 34/5/10 X-ray structure (PDB: 5CV0/57%)
MMUT ENSG00000146085 P22033 251000 196/56/51 X-ray structure (PDB: 3BIC*/95%)
MTHFR ENSG00000177000 P42898 236250 102/13/14 X-ray structure (PDB: 6FCX*/91%)
PAH ENSG00000171759 P00439 261600 543/58/91 X-ray structure (PDB: 6N1K*/93%)
PAX8 ENSG00000125618 Q06710 218700 38/2/2 NMR structure (PDB: 2K27/35%)
PCCA ENSG00000175198 P05165 606054 105/21/29 SwissModel st-HM (template PDB:

3N6R/91%)
PCCB ENSG00000114054 P05166 606054 124/16/27 SwissModel st-HM (template PDB:

3N6R/96%)
SLC22A5 ENSG00000197375 O76082 212140 261/27/37 SwissModel st-HM (template PDB:

6N3I.A/69%)
SLC25A13 ENSG00000004864 Q9UJS0 605814 78/18/19 Combined model: X-ray (PDB:

4P5V) þ SwissModel st-HM
(template PDB: 1OKC.A/76%)

SLC25A20 ENSG00000178537 O43772 212138 31/5/5 SwissModel st-HM (template PDB:
6GCI.A/96%)

TAT ENSG00000198650 P17735 276600 33/4/5 X-ray structure (PDB: 3DID/88%)
TGFB1 ENSG00000105329 P01137 131300 29/1/0 X-ray structure (PDB: 5VQP*/83%)
TSHR ENSG00000165409 P16473 275200 69/2/3 Combined model: X-ray (PDB:

2XWT) þ GPCR-SSFE 2.0 mt-HM
(PDB: many/67%)

NBS Variants in Structural Context
*Associated entries in Ensembl (human) database (https://www.ensembl.org/Homo_sapiens/Info/Index, last accessed June 1, 2021).
yAssociated entries in UniProtKB database (https://www.uniprot.org/uniprot, last accessed June 1, 2021).
zAssociated entries in Online Mendelian Inheritance in Man (OMIM) database (https://www.omim.org).
xNumber of entries per gene in ClinVar database by July 19, 2021 (https://www.ncbi.nlm.nih.gov/clinvar).
{Type of structure (experimental or modeled) shown and available in PirePred. Experimental method and server (program) used to build models or fragments

are indicated. Combined models conformed by an experimentally solved protein fragment plus a modeled one, as indicated in Materials and Methods. Indicated
coverage percentages calculated from the fraction of residues in the depicted structure (in multimeric assemblies the chain with the highest coverage is taken)
related to the residues number in the protein canonical sequence. Detailed information about every structure [eg, resolution, missing residues, mutations in
the original structure (*), renumbering, template(s), coverage(s), and the server used for modeling when it is the case] can be accessed through the Structure/
model information button (Figure 3) associated with each protein in PirePred.
Cryo-EM, cryoeelectronic microscopy; mt-HM, multitemplate homology model; PDB, Protein Data Bank; SNV, single-nucleotide variant; st-HM, single-

template homology model; st-TM, single-template threading model.
the predictors used in the PirePred classifier (Supplemental
Table S2) do not predict them. Therefore, PirePred cannot
classify this type of variants. Nevertheless, frameshift
variants are listed and structurally represented in the Pir-
ePred server, where the user is advised that they are usu-
ally pathogenic.

Feasibility of Incorporating Additional Genes or Novel
Predictors to PirePred

Novel genes associated with newborn screening or those
already known for which high-quality structural informa-
tion becomes available at the protein level can be easily
The Journal of Molecular Diagnostics - jmdjournal.org
incorporated into the PirePred server. The classification
algorithm has been trained with and relies on published
predictions from reported predictors, summarized in the
dbNFSP version 4.1a repository.6 Therefore, the quality
of the predictions will remain stable at the present level
without a need for recalibration when new predictors are
released because they should not necessarily be incorpo-
rated into PirePred. However, new predictors or new
versions of the existing ones can be easily incorporated
into PirePred after recalibration of the pathogenic-to-VUS
and VUS-to-benign thresholds (see above), which may
provide opportunities for further improvement of the
overall quality metrics.
411

https://www.ensembl.org/Homo_sapiens/Info/Index
https://www.uniprot.org/uniprot
https://www.omim.org
https://www.ncbi.nlm.nih.gov/clinvar
http://jmdjournal.org


Galano-Frutos et al
Results

PirePred Interrogation and Display

The PirePred home screen offers the user the possibility to
choose, through a main selection panel, one gene, protein,
or disease among 58 commonly investigated in neonatal
screening programs. The 58 entries in each of these three
selection modes are listed alphabetically. By selecting a
gene, protein, or disease, all the associated missense,
nonsense, and frameshift variants reported to date in the
ClinVar database5 are retrieved and listed in the variants
panel (Figure 3). At the same time, a structure of the con-
cerned protein (experimental, homology model, or com-
bined biological assembly) is depicted in the JSmol panel
through the JSmol viewer. A toolbar at the right side in-
cludes several functionalities. The prediction for this variant
button gives access to the PirePred ternary consensus clas-
sification (benign, VUS, or pathogenic) (Figure 4) for the
variant (only for SNVs, both missense and nonsense)
selected in the variants panel. This ternary classification
relies on binary predictions given by 15 well-established
predictors (Supplemental Table S2), which were selected
as explained in Materials and Methods. Importantly, users
interested in getting the ternary consensus prediction for
SNVs (missense or nonsense) not yet reported in ClinVar
can do so without having to upload any data. The pre-
dictions for all single amino acid variants button gives
access to a table that contains the consensus ternary
classification for all possible SNVs related to the selected
gene, protein, or disease (Figure 5). The table also in-
cludes the predictions issued by the individual predictors,
as taken from dbNFSP version 4.1a.6 PirePred, therefore,
enables the user not only to access predictions for
currently described SNVs but also to anticipate the effect
of any other variant of this type not yet described in
patients.

Table 2 Composition of the Data Set Retrieved from the ClinVar
Database and of the Filtered Set Used to Train the PirePred
Consensus Classifier

Data set Entries, n
Relative to
the total, %

All ClinVar* 10,052 100.00
Review status with 1þ star 7895 78.54
1þ Star and not uncertain or
conflictingy

2424 24.11

1þ Star and pathogenic or likely
pathogenicz

2154 21.43

1þ Star and benign or likely benignx 270 2.69

Data retrieved by June 1, 2021 (https://www.ncbi.nlm.nih.gov/clinvar).
*Related to missense, nonsense, and frameshift variants.
yTraining data set includes 1687 missense and 737 nonsense variants.
zGroup of ClinVar variants named in this work as pathogenic.
xGroup of ClinVar variants named in this work as benign.
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PirePred relates the consensus predictions given for the
SNVs to the structural/functional features of the protein
concerned. Once a specific variant is selected, the structure
depicted in the JSmol viewer zooms in and centers on the
changing amino acid residue (Figure 6, A). In the case of
missense SNVs, stability issues associated with the varia-
tion’s susceptibility to disrupt the protein local conformation
or alter neighboring intermonomeric interfaces can be
visually evaluated by the user. For nonsense and frameshift
variants, suggestive representations of the affected protein
segment and a self-explanatory text indicating the putative
disruptive structural consequences at the protein level will
appear in the top of the JSmol panel (Figure 6, B and C).
Moreover, SNVs linked to residues located at missing
fragments of the protein structure (nonmodeled parts of the
protein, see below on structural coverage) appear labeled
with an exclamation mark at their right in the variants panel
and will not be represented in the JSmol panel.
For users searching for a reasoned explanation to the

consensus classification given for the variant, the structural
context of this variant button provides access to relevant
structural/functional information on the original residue
changed and on its protein context (Figure 7, A). Thus, the
monomeric and multimeric solvent exposure of the changing
residue relative to its mean exposure in the unfolded ensemble,
its presence in the interaction surface between monomers if
any, or in a spot annotated as a SITE in the PDB file (cofactor
binding, catalytic, or assembling) or spot registered aspart of an
active site in theCatalytic SiteAtlas, is provided.Moreover, the
Structure/model information button leads to detailed informa-
tion about the shown structure [ie, resolution,missing residues,
mutations in the original structure, renumbering, template(s),
coverage(s), and the server used for modeling if appropriate]

Figure 2 Splitting workflow followed for the missense variants data set
to train the classifier and to assess the potential presence of overfitting.
The missense variants’ data set (1687 variants) is split into five groups in
which group 5 is left out and only used for the final external validation (EV,
red background) of the classifier. The different splits defined are named
after the initials of the training or validation method they have been used
for (learning curve, leave one out, and EV). The groups in the different
learning curve and leave-one-out tries may be used for training (green
background) or testing (brown background), depending on the try.
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 3 Panels that contain or access the relevant information in PirePred. The variants panel (1) displays the list of variants retrieved (in real time) from
ClinVar (missense, nonsense, and frameshift) associated with each gene, protein, or disease selected. Direct access to the prediction output for all possible
single-nucleotide variants (SNVs) is also given through the "Prediction for all single amino acid variants" button. The JSmol panel (2) allows the depiction of
real, modeled, or combined protein structures gathered or built for the server. The toolbar (3) includes the access to the main predictive output by PirePred
("Prediction for this variant" and "Predictions for all single amino acid variants" buttons), to extra information on structural/functional features when the
structural fragment that contains the SNV is available ("Structural context of this variant" button), to some detailed information on the biological assembly
structure ("Structure/model information" button), to the associated ClinVar entry ("ClinVar" button), and to the user’s Help of PirePred ("Help/credits"
button).

NBS Variants in Structural Context
(Figure 7, B). In addition, the atomic coordinates of the
structure depicted can be downloaded, which will allow the
user to perform amore detailed analysiswith other viewers and
modeling programs. Finally, the ’ClinVar’ button provides a
direct link to the ClinVar5 entry of the selected SNV, and the
’Help/Credits’ button enables direct access to a tutorial-like
Help for PirePred users.

Structural Coverage

As many as 41 of the 58 proteins encoded by the genes
analyzed in PirePred have experimentally determined
structures available in the PDB. In most cases, the structural
coverage (percentage of residues with determined atomic
coordinates) is reasonable. For 2 of these 41 proteins, the
coverage was lower, and an experimentally solved fragment
was combined with a modeled segment of the missing part
to increase the number of residues covered, as described in
Materials and Methods. Of the remaining 17 structures, 16
were obtained by single-template homology modeling
through the SwissModel server18 (n Z 6) or directly
retrieved from its repository (n Z 10). For the remaining
protein (the product of the LMBRD1 gene) the best structure
model, according to Molprobity21 (not shown), was ob-
tained from the i-Tasser server19 (Table 1). The means � SD
structural coverage of the structures shown in PirePred is
85% � 16%. Thirty-four of these structures cover >90% of
their protein sequences, whereas only three cover <50%
The Journal of Molecular Diagnostics - jmdjournal.org
(Table 1). PirePred thus provides an enhanced experimental
coverage for some proteins, as in the cases of the combined
structures (SLC25A13 and TSHR genes) and reliable ho-
mology models for some of the proteins analyzed.

Training of the Consensus Classifier

The data set with 2424 ClinVar entries (Table 2) was used to
select the pathogenic-to-VUS and VUS-to-benign thresh-
olds, which define the intervals that serve to classify the
variants as pathogenic, VUS, or benign. Thresholds were
selected separately for missense and for nonsense (only
SNVs, not those nonsense variants derived from base du-
plications or indels) variants. For the missense variants (nZ
1687), heatmaps for different quality prediction metrics
(PPV, NPV, MCC, accuracy, and coverage) were calculated
for all the LC, LOO, and EV tries described in Figure 2. The
heatmaps obtained for the final EV try (training with groups
1 to 4 and evaluation on external group 5) are depicted in
Figure 8, which are similar to those obtained for the
different LC and LOO tries. For all the tries described in
Figure 2, pathogenic-to-VUS and VUS-to-benign threshold
values were chosen by applying the following rules: i) the
pathogenic-to-VUS threshold is selected to maximize the
PPV; ii) the VUS-to-benign threshold is selected to maxi-
mize the NPV; and iii) if several threshold values yield
similar PPV or NPV (�0.95), the selection is done to
maximize MCC, coverage, and accuracy in that order of
413

http://jmdjournal.org


Figure 4 "Prediction for this variant" button output [example for a single-nucleotide variant (SNV)]. Panel displayed after clicking the "Prediction for this
variant" button. A ternary consensus classification for the SNV selected is given by PirePred for each of the three different quality parameters setups ["High
coverage" as default, "Intermediate," and "Low false-positive rate (FPR)" buttons] to the user (a detailed explanation about these alternative options is given
in Discussion and is also indicated when hovering over the corresponding buttons). The relying prediction outputs obtained by the 15 prediction tools are also
listed. ACMG, American College of Medical Genetics and Genomics; FNR, false-negative rate; VUS, variant of uncertain significance.
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priority. Supplemental Table S5 summarizes the thresholds
selected for the training sets considered together with the
PPV, NPV, MCC, accuracy, and coverage for those training
sets and for their corresponding test sets. In all cases,
pathogenic-to-VUS and VUS-to-benign thresholds of 0.4
and 0.7, respectively, were selected.

The LC approach showed similar PPV, NPV, MCC, accu-
racy, and coverage values independently of training and test set
size (Supplemental Table S5). On the other hand, the PPV,
NPV, MCC, accuracy, and coverage values obtained for the
LOO approach (Supplemental Table S5) and for the final
external validation (Supplemental Table S5) indicated that the
predictions done for variants that are outside the training set are
as good as those for variants that are in,which is consistentwith
a lack of overfitting in the classifying algorithm.

For nonsense variants, no heatmaps were necessary to
select the pathogenic-to-VUS and VUS-to-benign thresh-
olds. On the one hand, only 1 of the 737 variants of this type
present in the data set (Table 2) was annotated as benign,
which is consistent with the idea that producing a protein
lacking a fragment should normally trigger pathogenic
consequences. On the other hand, because the fraction of
414
benign predictions obtained for this single variant from the
selected predictors was 0.33 (1 of 3 predictors) and there
were only two pathogenic variants with a higher fraction of
benign predictions, it was decided that nonsense variants
with a fraction of �0.34 are considered VUS. Thus,
pathogenic-to-VUS and VUS-to-benign thresholds of 0.34
ao that variants predicted as benign by a fraction of pre-
dictions <0.34 are classified as pathogenic, whereas those
predicted by a fraction �0.34 are classified as VUS.
The indicated classification thresholds (0.4/0.7 for

missense and 0.34/1.0 for nonsense variants) will be
referred to as PirePred’s standard thresholds and represent a
fine compromise among several quality performance met-
rics, as described in the following section.

Discussion

Performance of the Consensus Classifier

The predictive statistics obtained by PirePred (with standard
thresholds) and by each of the 15 individual binary
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 5 "Predictions for all single amino acid variants" button output (example for a gene). Table displayed after clicking the "Predictions for all single
amino acid variants" button. The table includes both the PirePred ternary classification and the 15 individual prediction outputs for all possible single-
nucleotide variants. In the table, the PirePred predictions are given for each of the three selectable quality parameters setups ["High coverage" as
default, "Intermediate," and "Low false-positive rate (FPR)"]. ACMG, American College of Medical Genetics and Genomics; FNR, false-negative rate; VUS,
variant of uncertain significance.

NBS Variants in Structural Context
predictors for variants described in ClinVar as 1þ stars and
not uncertain or conflicting (Table 2) are given in Table 3.
This table includes the number of variants predicted by each
predictor in the data set (also those not predicted or pre-
dicted as VUSs), the breakdown of true and false pathogenic
[true positive (TP) and false positive (FP)] and true and false
benign [true negative (TN) and false negative (FN)] pre-
dictions, and the quality prediction metrics obtained on a
binary base (benign/pathogenic) for each predictor and for
the PirePred consensus classifier. Variants classified by
PirePred as benign can be aligned with ACMG guidelines as
fulfilling the BP4 supporting benign criterion, whereas those
classified as pathogenic fulfill the PP3 supporting patho-
genic criterion. The superiority of PirePred in predictive
power compared with the individual predictors can be noted
for many of the metrics. Coverage reports the percentage of
variants for which the classifying algorithm issues a pre-
diction (benign or pathogenic). With the standard thresholds
(High Coverage button in Figures 4 and 5), the PirePred
coverage (93.8%) is the third highest, only after those of
CADD38 (100%) and MutationTaster28 (99.8%), slightly
above that of LRT (91.3%), and significantly larger than
those offered by the rest of predictors (�71.1%). Accuracy
reports the fraction of correct predictions of all predictions
The Journal of Molecular Diagnostics - jmdjournal.org
given. PirePred accuracy (96.5%) outperforms all others,
followed by ClinPred36 (93.9%) and MutationTaster28

(93.5%). The lowest accuracy (85.0%) is provided by
PROVEAN.30 The MCC, which takes into account the four
elements of the confusion matrix (TP, FP, TN and FN) is
considered to provide a more balanced measure of the
quality of a binary classification than accuracy alone. Pir-
ePred MCC (0.70) is only outperformed by ClinPred36

(0.79) and REVEL32 (0.72), whose respective coverages,
71.1% and 69.6%, are much lower than that of PirePred. On
the other hand, PirePred accuracy and MCC are higher than
those of the only two predictors (CADD38 and Muta-
tionTaster28) that offer a larger coverage. The lowest MCC
is provided by LRT27 (0.43).

PirePred excels at identifying pathogenic variants. PPV
and sensitivity in Table 3 indicate, respectively, the per-
centage of pathogenic predictions that correspond to
pathogenic variants (according to ClinVar) and the per-
centage of pathogenic variants that are predicted as such.
PirePred PPV (96.5%) is below those of ClinPred36

(98.4%) and MutPred33 (98.2%) and similar to that of
CADD (96.7%), whereas PirePred sensitivity (99.9%) is
the highest followed by MutationTaster28 (98.4%). A
good PPV and coverage performance of MutationTaster is
415
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Figure 6 Representation modes in JSmol for the three different types of variants considered in PirePred. AeC: Missense (A), nonsense (B), and frameshift
(C). Self-explanatory texts on the top of each panel describe what it is shown. For nonsense and frameshift variants, the putative consequences triggered by
the amino acid change are indicated.
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guaranteed by the fact that this predictor automatically
predicts as disease-causing any variant that is marked as
pathogenic in ClinVar.

Concerning the identification of benign variants, Pir-
ePred greatly outperforms all the individual predictors in
NPV (96.7%), followed by MutationTaster28 (81%) and
REVEL32 (79%). This finding means that PirePred rarely
misclassifies a pathogenic variant as benign. Thus, with
standard thresholds, PirePred achieves excellent coverage
and the highest accuracy, NPV, and sensitivity of all 15
individual predictors (Figure 9, A), and, as discussed, it
does not seem to be overfitted to its training data set.
Nevertheless, PirePred pays a price for those generally
superior predictive performance metrics in its specificity
value (53.4%), which is the lowest among those of the 15
individual predictors. However, the low specificity of a
Figure 7 "Structural context of this variant" and "Structure/model informa
displayed after clicking the "Structural context of this variant" button. It conta
may help to provide, at the protein level, an explanation of the observed p
button. It details information on the biological assembly structure depicted i
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ternary classifier such as PirePred may arise for two rea-
sons with very different implications for clinical use: it
might reflect that many benign variants are misclassified as
pathogenic, increasing the number of FP results or that
they are declared as VUSs, not having an impact on the
number of FP results. PirePred (with standard thresholds)
declares approximately 40% of benign variants (107 of
270) as VUSs, which lowers the number of TN results but
does not increase the number of FP results and lowers its
specificity, defined as TN/(TN þ FP). Importantly, this
does not increase its FP rate (FPR) [defined as FP/
(TN þ FP þ UB)] (Table 3), which reports the fraction of
benign variants subjected to evaluation that are
wrongly classified as pathogenic. The FPR of PirePred
(28.1%) is close to the mean of the 15 individual predictors
(27.9%).
tion" buttons outputs [example for a single-nucleotide variant (SNV)]. A: Panel
ins information on structural functional features in the context of an SNV. They
henotype. B: Panel obtained after clicking the "Structure/model information"
n the JSmol viewer. CSA, Catalytic Site Atlas.

jmdjournal.org - The Journal of Molecular Diagnostics

http://jmdjournal.org


Figure 8 Heatmaps of quality prediction metrics for missense variants used to select the pathogenicetoevariant of uncertain significance
(VUS) and VUS-to-benign thresholds for the PirePred ternary classifier. Heatmaps were obtained from the final external validation (EV)
(Figure 2). AeE: For the indicated combinations of pathogenic-to-VUS (x axis) and VUS-to-benign (y axis) classifying thresholds, the corre-
sponding values of positive predictive value (A), negative predictive value (B), Matthews correlation coefficient (C), accuracy (D), and coverage
(E) are displayed on a background colored as indicated in the gradient bar at the right of each plot. Values for pathogenic-to-VUS threshold
higher than VUS-to-benign thresholds have no physical sense and are not shown. The first column on the left in the heatmap for positive
predictive value and the bottom row in the heatmap for negative predictive value are artifacts caused by the mathematical impossibility of
dividing 0 by 0.

NBS Variants in Structural Context
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Table 3 Predictive Statistics and Quality Metrics Obtained for the PirePred Consensus Classifier and the 15 Individual Predictors Selected
from dbNFSP Version 4.1a and Used in the Majority Vote Algorithm

PirePred or predictor

Variants with
a binary
prediction*

Non-predicted
pathogenic
variantsy

Non-predicted
benign variantsy TP FP TN FN Coveragez

PirePredkk

High Coverage (standard) 2274 43 107 2108 76 87 3 0.938
Intermediate 2118 115 129 2036 54 87 3 0.899
Low FPR 1955 317 152 1834 31 87 3 0.807

Mutation Taster 2419 3 2 2117 123 145 34 0.998
CADD 2424 0 0 1963 68 202 191 1.000***
LRT 2214 183 27 1730 84 159 241 0.913
ClinPred 1724 699 1 1372 22 247 83 0.711
REVEL 1687 736 1 1365 70 199 53 0.696
MetaSVM 1687 736 1 1270 66 203 148 0.696
LIST-S2 1639 772 13 1302 114 143 80 0.676
MVP 1536 826 62 1249 90 118 79 0.634
M-CAP 1563 740 121 1344 62 87 70 0.645
PROVEAN 1534 870 20 1133 79 171 151 0.633
SIFT 1534 870 20 1158 86 164 126 0.633
DEOGEN2 1523 867 34 1151 74 162 136 0.628
PolyPhen-2 1553 843 28 1159 68 174 152 0.641
Mutation Assessor 1450 938 36 1135 106 128 81 0.598
MutPred 1178 1046 200 1039 19 51 69 0.486

(table continues)
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*Number of variants obtained from the ClinVar group 1þ star and not uncertain or conflicting in Table 2 (2424) minus those in the third and fourth columns
from the left.
yNumber of variants classified (PirePred) or predicted (individual predictors) as VUS or with an unavailable prediction.
zCoverage is the fraction of variants in the data set (2424 total variants) that are classified as benign or pathogenic (ie, those not classified as VUS or

unpredicted).
xAccuracy is calculated as (TP þ TN)/(TP þ FP þ TN þ FN), which represents the percentage of correct predictions of all binary predictions.
{Matthews correlation coefficient: MCCZ TP�TN�FP�FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ
p .

kPPV Z TP/(TP þ FP), which is the fraction of pathogenic predictions corresponding to pathogenic variants; NPV Z TN/(TN þ FN), which is the fraction of
benign predictions corresponding to benign variants.
**Sensitivity Z TP/(TP þ FN).
yySpecificity Z TN/(TN þ FP).
zzFPR Z FP/Negatives Z FP/(TN þ FP þ non-predicted benign variants).
xxFNR Z FN/Positives Z FN/(TP þ FN þ non-predicted pathogenic variants).
{{Fraction of variants not being predicted as positive or negative. Equals 1 e coverage.
kkThe PirePred server classifies variants using thresholds (pathogenic-to-VUS and VUS-to-benign) based on the fraction of benign predictions recovered for

the variant. The pathogenic-to-VUS threshold for missense variants can be modified to increase specificity at the expense of coverage. PirePred achieves
maximal coverage in standard mode using the standard pathogenic-to-VUS threshold of 0.4, whereas in "Intermediate" and "Low FPR" modes, predictions are
issued using pathogenic-to-VUS thresholds of 0.24 and 0.08, respectively.
***Maximum (or minimum in the case of FPR, FNR, and uncertain rate) values highlighted in bold for each of the quality metrics obtained for PirePred ("High

Coverage") and the listed predictors (per column).
yyyValues highlighted in bold when the best performance is obtained by PirePred with "Intermediate" or with "Low FPR" prediction modes.
FN, false negative (false benign); FP, false positive (false pathogenic); FPR, false-positive rate; TN, true negative (true benign); TP, true positive (true

pathogenic); VUS, variant of uncertain significance.
Indications for a Prevalence-Dependent Use of
PirePred in a Clinical Setting

The practical usefulness of a predictive test, such as a var-
iants classifier, is related to the prevalence of the condition
investigated in the population analyzed.41 At constant
sensitivity and specificity (ie, having chosen a given test or
predictor), an increase in the prevalence increases the PPV
and decreases the NPV of the test, whereas a decrease in the
418
prevalence decreases the PPV and increases the NPV.
Therefore, when the test is used on a high prevalence
population, a main concern may be the FN results (missed
cases), whereas testing in a low prevalence population the
concern may be the FP results (false alarms), which may
translate in their further testing or undue treatment. In the
context of genetic interpretation associated with newborn
screening, if the variants subjected to analysis come from
individuals who have been derived to DNA sequencing after
jmdjournal.org - The Journal of Molecular Diagnostics

http://jmdjournal.org


Table 3 (continued)

Accuracyx MCC{ PPVk NPVk Sensitivity** Specificityyy FPR,zz % FNR,xx % Uncertain rate,{{%

0.965*** 0.704 0.965 0.967*** 0.999*** 0.534 28.1 0.1*** 6.2
0.974yyy 0.761 0.974 0.967yyy 0.999yyy 0.617 20.0 0.1yyy 10.1
0.983yyy 0.836yyy 0.983 0.967yyy 0.998yyy 0.737 11.5 0.1yyy 19.3
0.935 0.630 0.945 0.810 0.984 0.541 45.6 1.6 0.2
0.893 0.563 0.967 0.514 0.911 0.748 25.2 8.9 0.0***
0.853 0.432 0.954 0.398 0.878 0.654 31.1 11.2 8.7
0.939 0.794*** 0.984*** 0.748 0.943 0.918*** 8.1 3.9 28.9
0.927 0.721 0.951 0.790 0.963 0.740 25.9 2.5 30.4
0.873 0.586 0.951 0.578 0.896 0.755 24.4 6.9 30.4
0.882 0.529 0.919 0.641 0.942 0.556 42.2 3.7 32.4
0.890 0.520 0.933 0.599 0.941 0.567 33.3 3.7 36.6
0.916 0.522 0.956 0.554 0.950 0.584 23.0 3.3 35.5
0.850 0.514 0.935 0.531 0.882 0.684 29.3 7.0 36.7
0.862 0.526 0.931 0.566 0.902 0.656 31.9 5.9 36.7
0.862 0.530 0.940 0.544 0.894 0.686 27.4 6.3 37.2
0.858 0.537 0.945 0.534 0.884 0.719 25.2 7.1 35.9
0.871 0.503 0.915 0.612 0.933 0.547 39.3 3.8 40.2
0.925 0.521 0.982 0.425 0.938 0.729 7.0*** 3.2 51.4

NBS Variants in Structural Context
*Number of variants obtained from the ClinVar group 1þ star and not uncertain or conflicting in Table 2 (2424) minus those in the third and fourth columns
from the left.

yNumber of variants classified (PirePred) or predicted (individual predictors) as VUS or with an unavailable prediction.
zCoverage is the fraction of variants in the data set (2424 total variants) that are classified as benign or pathogenic (ie, those not classified as VUS or

unpredicted).
xAccuracy is calculated as (TP þ TN)/(TP þ FP þ TN þ FN), which represents the percentage of correct predictions of all binary predictions.
{Matthews correlation coefficient: MCCZ TP�TN�FP�FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ
p .

kPPV Z TP/(TP þ FP), which is the fraction of pathogenic predictions corresponding to pathogenic variants; NPV Z TN/(TN þ FN), which is the fraction of
benign predictions corresponding to benign variants.

**Sensitivity Z TP/(TP þ FN).
yySpecificity Z TN/(TN þ FP).
zzFPR Z FP/Negatives Z FP/(TN þ FP þ non-predicted benign variants).
xxFNR Z FN/Positives Z FN/(TP þ FN þ non-predicted pathogenic variants).
{{Fraction of variants not being predicted as positive or negative. Equals 1 e coverage.
kkThe PirePred server classifies variants using thresholds (pathogenic-to-VUS and VUS-to-benign) based on the fraction of benign predictions recovered for

the variant. The pathogenic-to-VUS threshold for missense variants can be modified to increase specificity at the expense of coverage. PirePred achieves
maximal coverage in standard mode using the standard pathogenic-to-VUS threshold of 0.4, whereas in "Intermediate" and "Low FPR" modes, predictions are
issued using pathogenic-to-VUS thresholds of 0.24 and 0.08, respectively.

***Maximum (or minimum in the case of FPR, FNR, and uncertain rate) values highlighted in bold for each of the quality metrics obtained for PirePred ("High
Coverage") and the listed predictors (per column).

yyyValues highlighted in bold when the best performance is obtained by PirePred with "Intermediate" or with "Low FPR" prediction modes.
FN, false negative (false benign); FP, false positive (false pathogenic); FPR, false-positive rate; TN, true negative (true benign); TP, true positive (true

pathogenic); VUS, variant of uncertain significance.
a metabolic screening, the prevalence is expected to be high.
However, if genetic screening programs for newborns
become more common, the expected prevalence of any in-
dividual condition will be low, bearing in mind that the
prevalence of the population is important to select the pre-
dictor/classifier and, given their quality metrics, to under-
stand the implications in terms of false alarms and missed
cases.
The Journal of Molecular Diagnostics - jmdjournal.org
In this respect, the PirePred standard thresholds can be
modified to adapt performance (which excels at not
missing positive cases) to populations of lower prevalence.
Specifically, the pathogenic-to-VUS threshold used for
missense variants (0.4) can be changed to trade between
specificity and coverage while leaving the excellent
sensitivity virtually unchanged. Thus, in addition to the
classification obtained using the standard thresholds, the
419
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Figure 9 Comparison of quality metrics for PirePred and the selected 15 predictors used with the Majority Vote algorithm. A: Radar plot to compare the
performance of PirePred (standard thresholds: High Coverage mode) and the 15 individual predictors on the ClinVar data set. The seven quality metrics in
Table 3 that in a perfect predictor would take the maximum value of 1 are shown with thick lines: PirePred and three other predictors (ClinPred, Muta-
tionTaster, and CADD) showing the best overall performances. B: Fault triangles of PirePred (standard thresholds: High Coverage mode) and the 15 individual
predictors. The three quality metrics in Table 3 [false positive rate (FPR), false negative rate (FNR), and uncertain rate] than would take the minimum value of
zero in a perfect predictor are shown. Their values (in percentages) are joined by lines that define triangles. The smaller the edges of the triangle, the better
the metrics represented. The fault triangle of an ideal predictor would consist of a single point at the center of the graph. MCC, Matthews correlation co-
efficient; NPV, negative predictive value; PPV, positive predictive value.
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PirePred server provides predictions using an intermediate
pathogenic-to-VUS threshold of 0.24 for missense variants
(Intermediate button) or a lower threshold of 0.08 (Low
FPR button) (Figures 4 and 5). The quality metrics ob-
tained with those alternative thresholds are shown in
Table 3. As anticipated, the standard pathogenic-to-VUS
threshold (0.4) offers the higher coverage (94%) and a
lower specificity (0.53), the intermediate pathogenic-to-
VUS threshold (0.24) reduces the coverage to 90% but
increases the specificity to 0.62, whereas the lower
pathogenic-to-VUS threshold (0.08) further reduces the
coverage to 81% and further increases the specificity to
0.74. The predictions obtained using the standard
pathogenic-to-VUS threshold (High Coverage button) are
provided as the default by the server, but the user can click
buttons to change from standard- to intermediate- (Inter-
mediate button) or to low-thresholdebased (Low FPR
button) predictions to adapt to the expected prevalence or
to suit particular needs (Figures 4 and 5). In short, going
from high coverage to Low FPR mode lowers the coverage
but improves or leaves virtually unmodified all the other
quality metrics for which a binary classification is issued
(Table 3).

The performance of PirePred can be compared with the
performance of the 15 related predictors by focusing on
three metrics whose values are independent of the
420
prevalence and may be of particular interest for its use in a
clinical context: the FPR (percentage of benign variants
predicted as pathogenic), the false-negative rate
(FNR) (percentage of pathogenic variant predicted as
benign), and the uncertain rate (percentage of variants not
classified as positive or benign, which equals 1 � coverage).
Figure 9, B presents a fault triangles plot built from the
values of those three quality metrics for PirePred and the
different predictors. Because the three metrics should get
null values for a perfect predictor, the smaller the edges
(closer vertices to the plot center) of the fault triangle the
better. The PirePred fault triangle is one of the smaller ones
because the FNR (0.1%) is the smallest one, the uncertain
rate (6.2%) is the third smallest one, and the FPR (28.1%) is
in the mean (Table 3).
The size and shape of the PirePred fault triangle change,

depending on the value of the missense pathogenic-to-VUS
threshold (Supplemental Figure S3). As the threshold is
lowered, the FPR decreases and the uncertain rate increases.
When PirePred is used with the Low FPR thresholds, the
very low FNR of 0.1% of the standard thresholds is retained
(few cases are missed), and the FPR is reduced to 11.5%
(much less false alarms) at the expense of increasing the
uncertain rate to 19.3%. In the Low FPR mode, PirePred
displays the highest accuracy, MCC, PPV (together with
ClinPred), NPV, sensitivity, and FNR. Its specificity is the
jmdjournal.org - The Journal of Molecular Diagnostics
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fifth best one (but note that its FPR is second best after
ClinPred) and the coverage is still the fourth best one.

Confirmation of PirePred Performance on Newly
Reported Variants

One of themajor problems that variants classifiers have to face
is that of overfitting. When a classifier is overfitted to the
training set, its performance on other variants may not be
similarly good. Being aware of the problem, great care has
been taken during the training of PirePred to avoid or at least
to reduce overfitting. As described in the section reporting
PirePred training, the metrics given in Table 3 are essentially
independent of the size of the training and test sets and the
precise composition of the training set, and,more importantly,
they hold for the group of variants (Figure 2) that were not
used in any of the training steps. In principle, all the above
should suffice to indicate that PirePred is not overfitted to its
training data set. However, surprises are not infrequent in
related literature, and sometimes the performance of classi-
fiers on newly reported variants is poorer than expected from
their published metrics.42

In this respect, the most stringent test a classifier should
pass is that of its performance on variantswhose pathogenic or
benign character was not known at the time the classifier was
trained. The training/test set described in Table 2 and used to
achieve the statistics described in Table 3 was confirmed by
June 1, 2021. Since then, by July 19, 2021, 224 new variants
with the 1þ stars and not uncertain or conflicting status have
been reported inClinVar. They comprise 150missense and 74
nonsense variants, which have been used to assess a real
performance of PirePred and compared to that of the 15
selected predictors on this data set. The corresponding quality
metrics are given in Table 4. These metrics are indeed similar
to those given in Table 3. With standard thresholds (high
coverage mode), PirePred is the best classifier in NPV,
sensitivity and FNR, second in accuracy, third in PPV, and
fourth in coverage. Although the specificity is still low for the
reasons described in the performance section, it is neverthe-
less the fifth best at FPR (here at 26%; clearly better than the
mean of 36%).With Low FPR thresholds, PirePred is the best
in accuracy, PPV, NPV, sensitivity, FPR, and FNR, second in
MCC, and third in specificity, while still keeping a coverage
of 73% (the fourth higher). On the basis of these results,
PirePred is proposed as the accurate, adaptable consensus
classifier of choice for SNVs (missense and nonsense)
occurring in 58 genes related to most of the conditions
investigated in neonatal screening programs.

Comparison with Computational Supporting Evidence
from VarSome and Franklin Platforms

In recent years, several bioinformatics suites have been
implemented that combine computational predictions with
clinical support, segregation, or functional studies to assist
variant calling. Two such platforms, Franklin (https://
The Journal of Molecular Diagnostics - jmdjournal.org
franklin.genoox.com, last accessed November 20, 2021)
and VarSome,43 use sets of rules that follow ACMG
criteria.9 The usefulness of those platforms to classify well-
characterized variants is expected to be superior to that of
purely computational tools. However, it is interesting to
compare how their computational modules perform because,
for novel variants, the computational prediction is the main
supporting evidence for a provisional classification of the
variant. Franklin and VarSome were compared with Pir-
ePred on the basis of their computational predictions for the
224 new variants with the 1þ stars and not uncertain or
conflicting status that were reported in ClinVar after the
PirePred classifier was finalized (Table 4). Those Franklin
and VarSome in silico predictions are mainly based on data
present in a dbNSFP release previous to the reporting of
those variants in ClinVar and are, therefore, as blind as
those of PirePred. For each variant, the Franklin and Var-
Some predictions are compared in Supplemental Table S6
with those of PirePred and with the ClinVar classification.
The pairwise prediction correlation between the pathoge-
nicity verdicts issued by the several classifiers is given in
Supplemental Table S7. PirePred (High Coverage) and
PirePred (Intermediate) show the best correlations with
ClinVar (0.727 and 0.745, respectively), followed by the in
silico predictor of VarSome (0.697), PirePred (low FPR; 0.
689), and the in silico predictor of Franklin (0.267). The
poor correlation of Franklin (in silico) seems related to the
fact that it does not issue predictions for nonsense SNVs,
which appear to be introduced in its full evaluation scheme
at the level of the ACMG criterion PVS1.9 However, when
VarSome or Franklin provide their verdicts using additional
information (their global predictions use updated ClinVar
data), their correlations with ClinVar are better (0.933 for
Franklin and 0.911 for VarSome). The overall quality
metrics of the Franklin and VarSome in silico predictions
for the 224 variants are given in Table 4, compared with
PirePred and the 15 individual predictors. PirePred out-
performs Franklin in silico and VarSome in silico in accu-
racy, specificity, MCC, and PPV and equals them in
sensitivity, NPV, and FNR. Its maximal coverage (0.893) is
below that of VarSome (0.938) and above that of Franklin
(0.509). It seems clear than using an integrated approach to
classify variants is the best choice when sufficient variant
characterization is available and that, for new variants,
PirePred outperforms the in silico predictions in those two
suites. The fine PirePred quality metrics observed for the
224 new variants with a one star ClinVar review status
(Table 4) are essentially retained (Supplemental Table S8)
when they are determined on the 26-variant subset classified
with two or three stars.

Conclusions

PirePred is a unique and user-friendly genetic interpretation
tool for protein sequence variants (missense, nonsense, and
421
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Table 4 Predictive Statistics and Quality Metrics Obtained by the PirePred Consensus Classifier, the 15 Individual Predictors Selected from
dbNFSP Version 4.1a, and the in Silico Predictive Tools from VarSome and Franklin Online Servers

PirePred or predictor

Variants
with a
binary
prediction*

Non-predicted
pathogenic
variantsy

Non-predicted
benign variantsy TP FP TN FN Coveragez

PirePred***
High Coverage (standard) 200 9 15 177 10 13 0 0.893
Intermediate 187 17 20 169 5 13 0 0.835
Low FPR 164 37 23 149 2 13 0 0.732

Mutation Taster 223 0 1 186 23 14 0 0.996
CADD 224 0 0 149 3 35 37 1.000yyy

LRT 209 12 3 158 16 19 16 0.933
ClinPred 155 69 0 115 3 35 2 0.692
REVEL 150 74 0 112 23 15 0 0.670
MetaSVM 150 74 0 108 20 18 4 0.670
LIST-S2 149 74 1 106 22 15 6 0.665
MVP 145 76 3 108 26 9 2 0.647
M-CAP 147 74 3 112 30 5 0 0.656
PROVEAN 146 78 0 95 9 29 13 0.652
SIFT 146 78 0 92 13 25 16 0.652
DEOGEN2 140 81 3 97 12 23 8 0.625
PolyPhen-2 140 81 3 88 8 27 17 0.625
Mutation Assessor 135 86 3 89 12 23 11 0.603
MutPred 121 84 19 99 7 12 3 0.540
Varsome (in silico)xxx 210 4 10 182 14 14 0 0.938
Franklin (in silico){{{ 114 86 24 100 10 4 0 0.509

(table continues)
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The assessed data set consisted of 224 newly reported variants (ClinVar) released after the full training and evaluation of PirePred reported in Table 3.
Variants newly released in ClinVar [classified as likely benign, benign, likely pathogenic or pathogenic, with review status of one or more stars (https://www.
ncbi.nlm.nih.gov/clinvar/docs/review_status)] released after the full training and evaluation of PirePred. A total of 43 of the 58 genes analyzed in PirePred are
represented in this external set. Pathogenicity verdicts accessed by July 19, 2021 (https://www.ncbi.nlm.nih.gov/clinvar).

*Number of variants predicted as pathogenic or benign by PirePred or the individual predictors used in the Majority Vote algorithm.
yNumber of variants classified (PirePred) or predicted (individual predictors) as VUS or with an unavailable prediction.
zCoverage is the fraction of variants in the data set (224 total variants) that are classified as benign or pathogenic (ie, those not classified as VUS or

unpredicted).
xAccuracy is calculated as (TP þ TN)/(TP þ FP þ TN þ FN), which represents the percentage of correct predictions of all binary predictions.
{Matthews correlation coefficient: MCCZ TP�TN�FP�FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFPð Þ� TPþFNð Þ� TNþFPð Þ� TNþFNð Þ
p

kPPV Z TP/(TP þ FP), which is the fraction of pathogenic predictions corresponding to pathogenic variants.
**NPV Z TN/(TN þ FN), which is the fraction of benign predictions corresponding to benign variants.
yySensitivity Z TP/(TP þ FN).
zzSpecificity Z TN/(TN þ FP).
xxFPR Z FP/Negatives Z FP/(TN þ FP þ non-predicted benign variants).
{{FNR Z FN/Positives Z FN/(TP þ FN þ non-predicted pathogenic variants).
kkFraction of variants not being predicted as positive or negative. Equals 1 e coverage.
***The PirePred server classifies variants using thresholds (pathogenic-to-VUS and VUS-to-benign) based on the fraction of benign predictions recovered for

the variant. The pathogenic-to-VUS threshold for missense variants can be modified to increase specificity at the expense of coverage. PirePred achieves
maximal coverage in standard mode using the standard pathogenic-to-VUS threshold of 0.4, whereas in Intermediate and low FPR modes, predictions are
issued using pathogenic-to-VUS thresholds of 0.24 and 0.08, respectively.
yyyMaximum (or minimum in the case of FPR, FNR, and uncertain rate) values highlighted in bold for each of the quality metrics obtained for PirePred ("High

Coverage") and the listed predictors (per column).
zzzValues highlighted in bold when the best performance is obtained by PirePred with "Intermediate" or with "Low FPR" thresholds.
xxxVarSome server (https://varsome.com, last accessed November 20, 2021).
{{{Franklin server (https://franklin.genoox.com, last accessed November 20, 2021).
FN, false negative; FP, false positive; FPR, false-positive rate; TN, true negative; TP, true positive; VUS, variant of uncertain significance.
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Table 4 (continued)

Accuracyx MCC{ PPVk NPV** Sensitivityyy Specificityzz FPR,xx % FNR,{{ % Uncertain rate,kk %

0.950 0.706 0.947 1.000yyy 1.000yyy 0.565 26.3. 0.0yyy 10.7
0.973zzz 0.807 0.971 1.000zzz 1.000zzz 0.722 13.2 0.0zzz 16.5
0.988zzz 0.887 0.987zzz 1.000zzz 1.000zzz 0.867 5.3zzz 0.0zzz 26.8
0.897 0.580 0.890 1.000yyy 1.000yyy 0.378 60.5 0.0yyy 0.4
0.821 0.580 0.980 0.486 0.801 0.921yyy 7.9yyy 19.9 0.0yyy

0.847 0.451 0.908 0.543 0.908 0.543 42.1 8.6 6.7
0.968yyy 0.912yyy 0.975yyy 0.946 0.983 0.921yyy 7.9yyy 1.1 30.8
0.847 0.572 0.830 1.000yyy 1.000yyy 0.395 60.5 0.0yyy 33.0
0.840 0.538 0.844 0.818 0.964 0.474 52.6 2.2 33.0
0.812 0.437 0.828 0.714 0.946 0.405 57.9 3.2 33.5
0.807 0.386 0.806 0.818 0.982 0.257 68.4 1.1 35.3
0.796 0.336 0.789 1.000yyy 1.000yyy 0.143 78.9 0.0yyy 34.4
0.849 0.623 0.913 0.690 0.880 0.763 23.7 7.0 34.8
0.801 0.498 0.876 0.610 0.852 0.658 34.2 8.6 34.8
0.857 0.606 0.890 0.742 0.924 0.657 31.6 4.3 37.5
0.821 0.569 0.917 0.614 0.838 0.771 21.1 9.1 37.5
0.830 0.552 0.881 0.676 0.890 0.657 31.6 5.9 39.7
0.917 0.665 0.934 0.800 0.971 0.632 18.4 1.6 46.0
0.933 0.657 0.929 1.000yyy 1.000yyy 0.500 36.8 0.0yyy 6.2
0.912 0.500 0.909 1.000yyy 1.000yyy 0.286 26.3 0.0yyy 49.1

NBS Variants in Structural Context
The assessed data set consisted of 224 newly reported variants (ClinVar) released after the full training and evaluation of PirePred reported in Table 3.
Variants newly released in ClinVar [classified as likely benign, benign, likely pathogenic or pathogenic, with review status of one or more stars (https://www.
ncbi.nlm.nih.gov/clinvar/docs/review_status)] released after the full training and evaluation of PirePred. A total of 43 of the 58 genes analyzed in PirePred are
represented in this external set. Pathogenicity verdicts accessed by July 19, 2021 (https://www.ncbi.nlm.nih.gov/clinvar).

*Number of variants predicted as pathogenic or benign by PirePred or the individual predictors used in the Majority Vote algorithm.
yNumber of variants classified (PirePred) or predicted (individual predictors) as VUS or with an unavailable prediction.
zCoverage is the fraction of variants in the data set (224 total variants) that are classified as benign or pathogenic (ie, those not classified as VUS or

unpredicted).
xAccuracy is calculated as (TP þ TN)/(TP þ FP þ TN þ FN), which represents the percentage of correct predictions of all binary predictions.
{Matthews correlation coefficient: MCCZ ðTP�TN�FP�FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ
p

kPPV Z TP/(TP þ FP), which is the fraction of pathogenic predictions corresponding to pathogenic variants.
**NPV Z TN/(TN þ FN), which is the fraction of benign predictions corresponding to benign variants.
yySensitivity Z TP/(TP þ FN).
zzSpecificity Z TN/(TN þ FP).
xxFPR Z FP/Negatives Z FP/(TN þ FP þ non-predicted benign variants).
{{FNR Z FN/Positives Z FN/(TP þ FN þ non-predicted pathogenic variants).
kkFraction of variants not being predicted as positive or negative. Equals 1 e coverage.
***The PirePred server classifies variants using thresholds (pathogenic-to-VUS and VUS-to-benign) based on the fraction of benign predictions recovered for

the variant. The pathogenic-to-VUS threshold for missense variants can be modified to increase specificity at the expense of coverage. PirePred achieves
maximal coverage in standard mode using the standard pathogenic-to-VUS threshold of 0.4, whereas in Intermediate and low FPR modes, predictions are
issued using pathogenic-to-VUS thresholds of 0.24 and 0.08, respectively.

yyyMaximum (or minimum in the case of FPR, FNR, and uncertain rate) values highlighted in bold for each of the quality metrics obtained for PirePred ("High
Coverage") and the listed predictors (per column).

zzzValues highlighted in bold when the best performance is obtained by PirePred with "Intermediate" or with "Low FPR" thresholds.
xxxVarSome server (https://varsome.com, last accessed November 20, 2021).
{{{Franklin server (https://franklin.genoox.com, last accessed November 20, 2021).
FN, false negative; FP, false positive; FPR, false-positive rate; TN, true negative; TP, true positive; VUS, variant of uncertain significance.
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frameshift) associated with 58 genes relevant to newborn
screening. Combining predictions from 15 predictors, Pir-
ePred provides accurate consensus classification (benign,
VUS, or pathogenic) for any possible variant of these types
that may arise in those 58 genes. The PirePred classification
is computational supporting evidence (as defined by the
ACMG guidelines), and it appears to be more accurate than
equivalent supporting evidence from some comprehensive
bioinformatics interpretation platforms. In addition, PirePred
sets a focus on SNVs reported in ClinVar for additional
structural evaluation. The affected protein residue is dis-
played in its structural protein context, which is analyzed to
provide hints for a molecular interpretation of the predicted
phenotype. The PirePred server can help both researchers and
clinicians get a quick and reliable interpretation of SNVs in
genes associated with most conditions currently investigated
in neonatal screening.

Supplemental Data

Supplemental material for this article can be found at
http://doi.org/10.1016/j.jmoldx.2022.01.005.
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