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Abstract: Phenylketonuria (PKU) is a rare metabolic disease caused by variations in a human gene,
PAH, encoding phenylalanine hydroxylase (PAH), and the enzyme converting the essential amino
acid phenylalanine into tyrosine. Many PKU-causing variations compromise the conformational sta-
bility of the encoded enzyme, decreasing or abolishing its catalytic activity, and leading to an elevated
concentration of phenylalanine in the blood, which is neurotoxic. Several therapeutic approaches
have been developed to treat the more severe manifestations of the disorder, but they are either
not entirely effective or difficult to adhere to throughout life. In a search for novel pharmacological
chaperones to treat PKU, a lead compound was discovered (compound IV) that exhibited promising
in vitro and in vivo chaperoning activity on PAH. The structure of the PAH-IV complex has been
reported. Here, using alchemical free energy calculations (AFEC) on the structure of the PAH-IV
complex, we design a new generation of compound IV-analogues with a higher affinity for the
enzyme. Seventeen novel analogues were synthesized, and thermal shift and isothermal titration
calorimetry (ITC) assays were performed to experimentally evaluate their stabilizing effect and their
affinity for the enzyme. Most of the new derivatives bind to PAH tighter than lead compound IV and
induce a greater thermostabilization of the enzyme upon binding. Importantly, the correspondence
between the calculated alchemical binding free energies and the experimentally determined ∆∆Gb

values is excellent, which supports the use of AFEC to design pharmacological chaperones to treat
PKU using the X-ray structure of their complexes with the target PAH enzyme.

Keywords: phenylketonuria; pharmacological chaperones; lead optimization; alchemical free energy
calculations; binding energetics

1. Introduction

Phenylketonuria (PKU) is an inborn error of metabolism caused by more than 1200 dif-
ferent variants of the PAH gene, many of them leading to a reduced enzymatic activity of
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the encoded phenylalanine hydroxylase (PAH) enzyme (PAHvdb, http://www.biopku.org,
last accessed on 7 February 2022). As a consequence, high phenylalanine blood levels build
up, which are toxic for the brain [1]. PKU patients are classified according to their blood
phenylalanine levels in three groups exhibiting phenotypes of increasing severity, namely,
mild hyperphenylalaninemia, mild PKU and classic PKU [2,3]. The neurological symptoms
associated with untreated PKU are mental retardation and developmental problems. Fortu-
nately, an early diagnosis from generalized neonatal screening followed by prompt dietary
intervention effectively avoids the most severe disease outcomes [4]. The mainstay of PKU
treatment is a low phenylalanine diet [5] and, for milder PKU patients, supplementation
with BH4 [6], the cofactor of the enzyme, as this compound acts as a pharmacological
chaperone (PC) partly recovering the lost enzymatic activity [7]. Despite these treatments,
new therapies for different PKU phenotypes are needed [8]. Enzyme replacement ther-
apy based on a PEG-coated phenylalanine metabolizing enzyme of bacterial origin is a
novel approach, but substantial side effects have already been reported upon subcutaneous
administration [9,10].

In a previous work, a compound (named IV) was identified as promising PC alter-
native to BH4 in the treatment of PKU [11]. The compound showed a stabilizing effect
on tetrameric wild-type PAH and several PKU variants, and gave rise to increased PAH
activity in cells transiently transfected, and in mouse liver after oral administration. Com-
pound IV, which will be referred to from here on as IVPC, was described to stabilize the
tetrameric functional form of the enzyme in vitro and appeared to act as a canonical PC,
binding to the PAH tetrameric folded state, displacing the folding equilibrium towards the
native form and rescuing its physiological function [11]. The crystallographic structure of
human PAH in complex with IVPC [12] indicates this compound binds to the active site
of the enzyme, participating in the catalytic metal coordination sphere (Figure 1), which
explains its behavior as a weak competitive PAH inhibitor [11]. On the other hand, PAH
refolding kinetics demonstrated an additional chaperoning role for IVPC: it accelerates the
folding reaction by stabilizing partly folded species transiently accumulating along the
PAH-folding pathway [12]. Interestingly, the reported X-ray structure of the PAH-IVPC

complex opens a way to the rational design of improved PCs for PKU treatment.
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Figure 1. Close view of the PAH catalytic site showing bound IVPC depicted in cyan (PDB ID 4 ANP 
[12]). The catalytic iron atom (gray sphere) is five-coordinated. Its interaction with N1 of IVPC (in 
CPK with carbon atoms in cyan) does not perturb its coordination with the residues of the catalytic 
triad: H285, H290 and E330. Additional compound interactions with water molecules (small red 
spheres) and PAH residues (in CPK) are also represented. 

Figure 1. Close view of the PAH catalytic site showing bound IVPC depicted in cyan (PDB ID 4
ANP [12]). The catalytic iron atom (gray sphere) is five-coordinated. Its interaction with N1 of IVPC

(in CPK with carbon atoms in cyan) does not perturb its coordination with the residues of the catalytic
triad: H285, H290 and E330. Additional compound interactions with water molecules (small red
spheres) and PAH residues (in CPK) are also represented.

Aiming at this, we use here the X-ray structure of the complex to design reasonable
IVPC-variants compatible with tight binding and to perform alchemical free-energy cal-
culations [13–15] to compute the change in the affinity of their complexes, relative to that

http://www.biopku.org
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of IVPC. We have synthesized seventeen such derivatives, spanning a calculated ∆∆Gb of
2 kcal mol−1 (unsigned). Their actual ∆∆Gb and mid-denaturation temperature change
(∆Tm) relative to the reference PAH-IVPC complex were determined using ITC experiments
and thermal unfolding, respectively. The feasibility of this approach to obtain PCs with
improved binding affinity for the target enzyme was assessed.

2. Results and Discussion

2.1. Design of Novel IVPC Analogues as Potential Pharmacological Chaperones with New
Chemical Properties

IVPC, i.e., 5,6-dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3-d]
pyrimidin-4(1H)-one, is the lead PC of a second generation of designed analogues (com-
pounds IVx). The X-ray structure of the complex between PAH and IVPC (Figure 1) [12]
was used to rationally design analogues with novel substituents, aiming at increasing the
affinity of the complex.

From a thermodynamic point of view, the affinity of a compound for a protein can be
increased either by improving its interactions with the protein or by decreasing its interac-
tions with the solvent. Based on the crystallographic structure of the PAH-IVPC complex,
we designed chemical modifications in the three heterocycles (thiophene, pyridine and
pyrimidine) of IVPC that introduce new substituents pointing toward either small cavities
neighboring bound compound IVPC or to the solvent. The proposed modifications sought
to enhance ligand/protein van der Waals interactions and the entropic stabilization of the
complex through increased hydrophobic effect. In total, we designed and synthesized 17
IVPC analogues (Table 1) with different physicochemical and lipophilic properties (Table S4).
The chemical modifications in IVPC analogues include addition of polar groups to establish
new interactions with PAH residues and addition of apolar groups (or substitution of the
pyridine ring by other apolar ring systems) to fill parts of the large groove conforming the
catalytic site, which remains accessible to the solvent after compound binding. One of these
fillable spaces appears just below the pyridine ring (as per the spatial orientation given in
Figure S1b) packing onto the α-helix depicted on the right side wall of the catalytic site.
Another one appears behind the coordinated center, in the direction pointed by the sulfur
atom of the 2-thioxo group (in the pyrimidine central ring), and a third one appears in the
direction pointed by the most buried methyl group out of the two in the thiophene ring.

Table 1. Synthesized analogues of lead compound IVPC. The chemical modifications introduced are
distributed throughout the three heterocycles, thiophene, pyridine and pyrimidine, as indicated.

Compound Chemical Structure MW (g/mol) Modified Heterocycle

IVPC
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Scheme 1. Synthesis of mixed thioureas 7–9. 

Mixed thioureas 13–15 were synthesized through a one pot procedure from 4-substi-
tuted pyridin-2-amines (Scheme 2). Coupling was initialized by reaction of 1,1′-thiocar-
bonylbis(pyridin-2(1H)-one) with the corresponding pyridin-2-amine. After the time re-
quired for in situ generation of the pyridin-2-isothiocyanate, 2-amino-thiophene 2 was 
added to the resulting reaction mixture. In this way, mixed thioureas 13–15 were obtained 
starting from 4-chloropyridin-2-amine 10, 4-methoxypyridin-2-amine 11 and 4-cyano-
pyridin-2-amine 12 with a 92, 85 and 88% two-step yield, respectively. This one pot pro-
cedure did not lead to the expected results when pyridin-2-amine 5 or 6 with an inductive 
electron-donating group at C4 was used as starting material. 

361.4 Thiophene

Overall, the modifications lead to analogues (Table S4) more hydrophilic than IVPC

(e.g., IVa, IVb, IVd or IVg) and others more hydrophobic (e.g., IVh, IVj, IVm, IVn or IVo).
In general, the IVPC analogues maintain the adequate drug likeness of the lead for oral
administration (Lipinski’s [16], Veber’s [17] and Egan’s [18] rules), and, according to the
BOILED-Egg predictive model (Figure S2), they retain the low probability of crossing the
blood–brain barrier exhibited by the lead, which is convenient as they are wished to act
in the liver and kidney. A few analogues, though, (IVc, IVd, IVh, IVi, IVj and IVq) may
show suboptimal intestinal absorption.

2.2. Synthesis of IVPC Analogues IVa–IVq

Analogues IVa–IVg in which substituents on the thiophene or/and the pyridine ring of
the lead compound have been varied were prepared from cyclization of the corresponding
mixed thioureas using conditions for tert-butoxide-assisted amidation of esters [19] and
subsequent side chain transformation when necessary, as detailed below.

Reaction of 2-aminothiophene 1 or 2 with 1,1′-thiocarbonylbis(pyridin-2(1H)-one) [20,21]
in dry dichloromethane at room temperature provided thiophene-2-isothiocyanate 3 or 4
with a 69 and 85% yield, respectively. Mixed thioureas 7 and 8 were obtained with excellent
yield (98–92%) by reaction of thiophene-2-isothiocyanate 3 with 4-methyl-pyridin-2-amine 5
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or 4-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-2-amine 6. The reaction of thiophene-2-
isothiocyanate 4 with 4-(((tert-butyldimethylsilyl)oxy)methyl)pyridin-2-amine 6 cleanly
afforded mixed thiourea 9 with a 90% yield (Scheme 1).
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Scheme 1. Synthesis of mixed thioureas 7–9.

Mixed thioureas 13–15 were synthesized through a one pot procedure from 4-substituted
pyridin-2-amines (Scheme 2). Coupling was initialized by reaction of 1,1′-thiocarbonylbis
(pyridin-2(1H)-one) with the corresponding pyridin-2-amine. After the time required for
in situ generation of the pyridin-2-isothiocyanate, 2-amino-thiophene 2 was added to the
resulting reaction mixture. In this way, mixed thioureas 13–15 were obtained starting from
4-chloropyridin-2-amine 10, 4-methoxypyridin-2-amine 11 and 4-cyanopyridin-2-amine 12
with a 92, 85 and 88% two-step yield, respectively. This one pot procedure did not lead
to the expected results when pyridin-2-amine 5 or 6 with an inductive electron-donating
group at C4 was used as starting material.
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Scheme 2. Synthesis of mixed thioureas 13–15.

Cyclization of the mixed thioureas 7–9, 13–15 using potassium tert-butoxide in tert-
butanol under reflux conditions provided the corresponding 3-(pyridin-2-yl)-2-thioxo-2,3-
dihydrothieno[2,3-d]pyrimidin-4(1H)-ones (Scheme 3). The yield obtained depended on
the substitution pattern: IVc (63%), 16 (95%), 17 (51%), IVe (61%), IVf (74%) and IVg (74%).
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Scheme 3. Cyclization of mixed thioureas to thieno[2,3-d]pyrimidin-4-ones.

Subsequent transformation of thiophene and/or pyridine side chain in compounds
IVc, 16 and 17 provided analogues IVa, IVd and IVb, respectively.

Analogue IVa was obtained in 31% yield by reduction with LiAlH4 of the ethoxycar-
bonyl group at C6 in analogue IVc (Scheme 4).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 21 
 

 

+
N

N
S

O

O

1) CH2Cl2,
 rt

N

R

NH2

S

CO2Et

NH2

Me

Me

2)                             , rt

10, R = Cl
11, R = OMe
12, R = CN

2 13, R = Cl, 92 % 
14, R = OMe, 85 %
15, R = CN, 88 %

S

CO2Et

N
H

Me

Me
S

N
H

N

R

 
Scheme 2. Synthesis of mixed thioureas 13–15. 

Cyclization of the mixed thioureas 7–9, 13–15 using potassium tert-butoxide in tert-
butanol under reflux conditions provided the corresponding 3-(pyridin-2-yl)-2-thioxo-
2,3-dihydrothieno[2 ,3-d]pyrimidin-4(1H)-ones (Scheme 3). The yield obtained depended 
on the substitution pattern: IVc (63%), 16 (95%), 17 (51%), IVe (61%), IVf (74%) and IVg 
(74%). 

N
H

N

O

SS

Me

R
N

R'

KOtBu

tBuOH, refluxS

CO2Et

N
H

Me

R
S

N
H

N

R'

IVc, R = CO2Et, R' = Me, 63 %
16, R = CO2Et, R' = CH2OTBDMS, 95 % 
17, R = Me, R' = CH2OTBDMS, 51 %
IVe, R = Me, R' = Cl, 61 %
IVf, R = Me, R' = OMe, 74 % 
IVg, R = Me, R' = CN, 74 %

7, R = CO2Et, R' = Me
8, R = CO2Et, R' = CH2OTBDMS
9, R = Me, R' = CH2OTBDMS
13, R = Me, R' = Cl
14, R = Me, R' = OMe
15, R = Me, R' = CN  

Scheme 3. Cyclization of mixed thioureas to thieno[2,3-d]pyrimidin-4-ones. 

Subsequent transformation of thiophene and/or pyridine side chain in compounds 
IVc, 16 and 17 provided analogues IVa, IVd and IVb, respectively. 

Analogue IVa was obtained in 31% yield by reduction with LiAlH4 of the ethoxycar-
bonyl group at C6 in analogue IVc (Scheme 4). 

N
H

N

O

SS

Me

EtO2C
N

Me

IVc

N
H

N

O

SS

Me

HOH2C
N

Me

LiAlH4

IVa

THF, – 30 ºC
31 %

 
Scheme 4. Conversion of analogue IVc into analogue IVa. 

Removal of tert-butyldimethylsilyl group in compound 17 using tetrabutylammo-
nium fluoride in THF cleanly afforded analogue IVb in 79% yield (Scheme 5). 

Scheme 4. Conversion of analogue IVc into analogue IVa.

Removal of tert-butyldimethylsilyl group in compound 17 using tetrabutylammonium
fluoride in THF cleanly afforded analogue IVb in 79% yield (Scheme 5).
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Reduction of the ethoxycarbonyl group at C6 in compound 16 with LiAlH4 followed
by removal of tert-butyldimethylsilyl group in the obtained compound 18 using tetrabuty-
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lammonium fluoride in THF provided analogue IVd with a 49% overall yield over two
steps (Scheme 6).
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Scheme 6. Conversion of compound 16 into chaperone IVd.

Analogues IVh–IVk modified in the pyrimidine ring were prepared by S-Alkylation
of analogue IVc with the corresponding alkyl halide in the presence of potassium hydrox-
ide [22] (Scheme 7). In this way, S-benzylation of IVc provided IVh with 92% yield, reaction
of IVc with iodoacetonitrile led to IVi in 91% yield and S-allylation reaction of IVc with
3-chloro-2-methyl-1-propene and allyl bromide provided IVj and IVk with 84 and 91%
yield, respectively.
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In addition, analogue IVl also modified in the pyrimidine ring was prepared in
95% yield by reduction of the carboxyethyl group at C6 in chaperone IVk with LiAlH4
(Scheme 8).
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Reaction of analogue IVn with iodoacetonitrile in the presence of potassium hydrox-
ide provided analogue IVp with 67% yield (Scheme 10). 
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The synthesis of analogue IVq started with the preparation of thiophene 19 in 31% 
yield by cyclization of ethyl-2-oxobutyrate and ethyl cyanoacetate with elemental sulfur 
according to Gewald procedure [23,24] using diethylamine as base and ethanol as solvent 
to avoid side chain reactions. The thiophene 19 was converted into isothiocyanate 20 with 
a 67% yield by reaction with 1,1′-thiocarbonylbis(pyridin-2(1H)-one) as described above. 
Isothiocyanate 20 reacted with 4-methylpyridin-2-amine 5 to afford mixed thiourea 21 in 
95% yield. Finally, analogue IVq was obtained in 85% by treatment of mixed thiourea 21 
with potassium tert-butoxide in tert-butanol (Scheme 11). 

Scheme 8. Conversion of chaperone IVk into chaperone IVl.

Sodium hydride promoted reaction of 2-aminothiophene 2 with aryl isothiocyanates
led to analogues IVm–IVo, in which pyridine ring was replaced by another aromatic ring in
a single-step process (Scheme 9). The reaction with 1-isothiocyanato-3,5-dimethylbenzene,
1-isothiocyanatonaphthalene and 5-isothiocyanato-1,2,3,4-tetrahydronaphthalene cleanly
afforded compounds IVm, IVn and IVo in 79, 80 and 74% yield, respectively.
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Scheme 10. Conversion of analogue IVn into analogue IVp.

The synthesis of analogue IVq started with the preparation of thiophene 19 in 31%
yield by cyclization of ethyl-2-oxobutyrate and ethyl cyanoacetate with elemental sulfur
according to Gewald procedure [23,24] using diethylamine as base and ethanol as solvent
to avoid side chain reactions. The thiophene 19 was converted into isothiocyanate 20 with
a 67% yield by reaction with 1,1′-thiocarbonylbis(pyridin-2(1H)-one) as described above.
Isothiocyanate 20 reacted with 4-methylpyridin-2-amine 5 to afford mixed thiourea 21 in
95% yield. Finally, analogue IVq was obtained in 85% by treatment of mixed thiourea 21
with potassium tert-butoxide in tert-butanol (Scheme 11).
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2.3. In Silico Calculation of the Affinity of the PAH-IVPC and PAH-IVx Complexes

The difference in binding free energy between the PAH-IVPC complex and any of
those formed by the enzyme with the IVPC analogues was determined by alchemical
free-energy calculations relying on short 5 ns H-REMD simulations, as described in Meth-
ods. Two binding scenarios were considered where either a ferrous or a ferric cation
(previously parameterized as described in Methods) appears coordinated to the PAH
catalytic triad (residues H285, H290 and E330). Using the calculated free energies ob-
tained from the alchemical transformations simulated on the compounds (IVPC→IVx)
when bound to PAH (∆∆Gbound

IVPC→IVx) and when solvated alone (∆Gsolv
IVPC→IVx), the

relative binding free energy of each PAH-IVx complex relative to the PAH-IVPC one
(∆∆Gb

IVPC→IVx = ∆Gb
IVx–∆Gb

IVPC) was calculated (Table 2). The short simulation time
(5 ns) setup used here for the simulations proved to be enough to obtain reproducible re-
sults with the number of replicas run (from 3 to 6). In longer simulations, a higher number
of replicas led to separation of the compound from the metal center (not shown), which
had to be discarded. Clearly, the differential binding energies pertaining to transforma-
tions of complexes bearing FeII show much better correspondence with the experimentally
determined ones (Table 2) and are subsequently presented. Irrespective of the modeled
iron redox state, complexes involving IVPC analogues carrying modifications in the iron
coordinating 2-thioxo group of the pyrimidine ring (analogues IVh, IVi, IVj, IVk, IVl and
IVp) resulted in poorly reproducible trajectories, with the ligand often being displaced
from the enzyme binding site and losing its coordination with the metal center. For some of
these complexes we could still determine ∆∆Gb

IVPC→IVx values by increasing the number
of simulation replicas and selecting those where the ligand remained bound at the original
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site at the end of the alchemical transformation. This compound disconnection from the
metal center was not observed in the other simulated complexes.

Table 2. Calculated and experimental relative binding free energies, and thermostabilizing effect of
compounds on PAH.

Compound
In Silico ∆∆Gb IVPC→IVx (kJ/mol) a Experimental ∆∆Gb (kJ/mol) b ∆Tm

(◦C) c

with FeII with FeIII

IVPC - - - 5.0 ± 0.6
IVa −1.62 ± 0.18 −0.66 ± 0.25 −1.25 ± 1.19 5.5 ± 0.8
IVb 2.12 ± 0.79 −0.08 ± 0.23 1.89 ± 1.60 1.2 ± 0.9
IVc −2.78 ± 1.70 −1.65 ± 0.93 −1.92 ± 1.31 6.5 ± 0.8
IVd 0.63 ± 0.37 −0.73 ± 0.19 0.42 ± 1.29 8.6 ± 0.5
IVe −3.14 ± 0.19 −3.98 ± 0.09 −2.50 ± 1.12 8.0 ± 1.4
IVf −1.06 ± 0.37 −3.04 ± 0.33 −0.88 ± 1.25 4.1 ± 0.8
IVg 0.21 ± 0.37 −4.01 ± 0.37 0.09 ± 1.17 7.3 ± 0.8
IVh n.d. c n.d.c −0.10 ± 1.13 −4.1 ± 0.7
IVi 0.64 ± 3.21 −22.94 ± 4.36 −2.46 ± 1.55 14.1 ± 0.6
IVj n.d. c −9.52 ± 8.95 1.65 ± 1.10 −4.9 ± 0.8
IVk 3.01 ± 0.62 n.d. c −0.43 ± 1.14 −7.4 ± 0.6
IVl 8.36 ± 2.64 n.d. c 0.50 ± 1.08 1.3 ± 0.6

IVm −3.39 ± 0.80 −3.28 ± 0.93 −2.03 ± 1.26 10.0 ± 0.9
IVn −4.17 ± 0.89 −7.33 ± 0.32 −2.68 ± 1.27 13.6 ± 1.4
IVo −5.99 ± 0.64 −3.17 ± 1.09 −4.28 ± 1.37 8.8 ± 0.6
IVp −1.00 ± 2.87 −11.85 ± 3.02 −3.57 ± 1.10 17.9 ± 0.9
IVq −4.86 ± 0.76 −3.86 ± 0.31 −1.54 ± 1.32 6.7 ± 0.6

a Relative AFEC binding free energies obtained as ∆∆Gb
IVPC→IVx = ∆Gbound

IVPC→IVx–∆Gsolv
IVPC→IVx. Partial

errors and values for the solvated and bound AFEC transformations are given in Table S3. Abbreviation n.d.
indicates the energies that could not be determined. b Experimental relative binding energy obtained from the

following equation: ∆∆GIVPC→IVx
b = −RTln

KIVPC
d

KIVx
d

, where K IVPC

d and K IVx
d were determined by ITC experiments.

c Increase in PAH mid-point unfolding temperature in presence of IVPC or analogues (IVx).

For the complexes bearing FeII, negative ∆∆Gb
IVPC→IVx values (meaning increased

affinity) were calculated for analogues IVa, IVc, IVe, IVf, IVm, IVn, IVo and IVq, while
analogues IVb, IVd and IVg were calculated to form just slightly less tight complexes than
IVPC (Table 2). Thus, unlike the substitutions at the 2-thioxo group in the central pyrimidine
ring, which are calculated to be destabilizing, the single substitutions introduced at the
thiophene ring and the nonpolar substitutions done at the pyridine ring are calculated to
either significantly increase the affinity of the analogue for the protein or, in a few cases, to
only mildly decrease it.

2.4. Actual Affinity of the PAH-IVx Complexes and its Effect on PAH Thermostability

The thermostabilizing effect of IVPC analogues on PAH was determined by monitoring
PAH unfolding curves using Trp emission fluorescence. In the initial screening work where
IVPC was discovered, its PAH stabilizing effect was assessed by fitting the fluorescence
curves to a two-state unfolding model [11]. In a recent work describing PAH thermal
unfolding in more detail, two spectroscopic thermal unfolding transitions were noticed,
and the unfolding curves were fitted to a three-state model [25]. As IVPC primarily stabilizes
the second unfolding transition of PAH, the one that takes place at a higher temperature
and gives rise to the larger emission intensity, and as IVPC analogues appear to do the same,
we evaluated, for simplicity, their thermostabilizing effects by fitting the corresponding
unfolding curves to the simpler two-state model (Figure 2). Thus, ∆Tm values (Tm

IVx–Tm)
are reported, which essentially coincide with ∆Tm2 values.
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moderate effect or (b) with thermostabilizing effect. The samples contain PAH (2 µM monomer 
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Control in absence of compound (black) contains the same % of DMSO as the rest of samples. Con-
tinuous lines correspond to two-state fittings of the unfolding curves. 

Only three analogues carrying substitutions in the thioxo group (IVh, IVj and IVk) 
show a thermodestabilizing effect, suggesting they could preferentially bind to the PAH 
unfolded state rather than to the folded one (Figure 2a). Analogues IVb, IVf and IVl exert 
a moderate stabilizing effect (0 < ΔTm < 5 °C), which is below that of the lead IVPC (Table 2 
and Figure 2a). All the other analogues stabilize the enzyme more than IVPC (Figure 2b). 
Compounds IVi, IVm, IVn and IVp show an impressive effect as they increase the Tm by 
more than 10 °C. 

Thermostabilization of a protein because of ligand binding tends to correlate with 
the affinity of the complex the ligand forms with the native state of the protein [26]. How-
ever, the affinity of the complex is also influenced by other thermodynamic parameters, 
such as ΔHb, or ΔCpb. Therefore, a perfect correlation between ΔTm and ΔΔGb is not ex-
pected. To determine ΔΔGb experimentally, ITC assays were performed with the synthe-
sized analogues and PAH (Table 2 and Figure 3). The affinity of all the complexes is in the 
micromolar range, and nine of them exhibit a higher affinity (lower Kd) than IVPC (Figure 
3). As anticipated, qualitative agreement is observed (Figure S3) between the ΔTm associ-
ated to each ligand and the ΔΔGb determined in the IVx complexes relative to the complex 
formed by IVPC. Clearly, the more thermostabilizing analogues are among those with 
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Figure 2. In vitro effects of IVPC and IVx analogues on PAH thermostability. Thermal unfolding
curves of PAH in absence or presence of IVPC and (a) IVx analogues with thermodestabilizing or
moderate effect or (b) with thermostabilizing effect. The samples contain PAH (2 µM monomer
concentration) and 100 µM compound IVPC (green), IVa (yellow), IVb (gray), IVc (pink), IVd (blue),
IVe (brown), IVf (red), IVg (violet), IVh (light magenta), IVi (olive), IVj (light cyan), IVk (light
yellow), IVl (navy), IVm (ochre), IVn (orange), IVo (dark gray), IVp (turquoise) and IVq (magenta).
Control in absence of compound (black) contains the same % of DMSO as the rest of samples.
Continuous lines correspond to two-state fittings of the unfolding curves.

Only three analogues carrying substitutions in the thioxo group (IVh, IVj and IVk)
show a thermodestabilizing effect, suggesting they could preferentially bind to the PAH
unfolded state rather than to the folded one (Figure 2a). Analogues IVb, IVf and IVl exert
a moderate stabilizing effect (0 < ∆Tm < 5 ◦C), which is below that of the lead IVPC (Table 2
and Figure 2a). All the other analogues stabilize the enzyme more than IVpc (Figure 2b).
Compounds IVi, IVm, IVn and IVp show an impressive effect as they increase the Tm by
more than 10 ◦C.

Thermostabilization of a protein because of ligand binding tends to correlate with the
affinity of the complex the ligand forms with the native state of the protein [26]. However,
the affinity of the complex is also influenced by other thermodynamic parameters, such
as ∆Hb, or ∆Cpb. Therefore, a perfect correlation between ∆Tm and ∆∆Gb is not expected.
To determine ∆∆Gb experimentally, ITC assays were performed with the synthesized
analogues and PAH (Table 2 and Figure 3). The affinity of all the complexes is in the
micromolar range, and nine of them exhibit a higher affinity (lower Kd) than IVPC (Figure 3).
As anticipated, qualitative agreement is observed (Figure S3) between the ∆Tm associated
to each ligand and the ∆∆Gb determined in the IVx complexes relative to the complex
formed by IVPC. Clearly, the more thermostabilizing analogues are among those with
higher ∆∆Gb values (Figure S3).

The effect of introducing substituents in the 2-thioxo group of the central pyrimidine
ring on the affinity of the complexes can be assessed by comparing the affinity of the
complexes formed by analogues IVh, IVi, IVj and IVk with that of IVc, the affinity of
complex formed by IVl with that of IVa, and by comparing the affinity of the complex
formed by IVp with that of IVn. The small and polar –CH2–CN substituent (IVi and
IVp) leaves the affinity of the complexes close to that of their references (IVc and IVn,
respectively, see Table 2). The two other substituents tested, –CH2–C(CH3)=CH2 (IVj)
and –CH2–CH=CH2 (IVk and IVl) destabilize the complex, as shown by comparison with
their references (IVc, IVc and IVa, respectively, Table 2), in agreement with the anomalous
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behavior observed in the MD simulations used to calculate the alchemical ∆∆Gb values for
those derivatives.
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ITC experiments.

In contrast, the IVa/IVPC, IVc/IVPC and IVd/IVb pairs indicate that replacing the
apolar 6-methyl group at the thiophene ring either with –CH2OH or COOEt groups increase
the affinity of the complex. The affinity is also increased by replacing the pyridine ring with
bulkier chemical groups (see IVm,n,o/IVPC pairs) or by substitution of the methyl group
by –OCH3 (see IVf/IVPC pair) or –Cl (see pair IVe/IVPC), but not by -CN (pair IVg/IVPC),
which hardly changes the affinity, or –CH2OH (see IVb/IVPC and IVd/IVa pairs) which is
destabilizing. The described stabilizing substitutions indicate that both the surface-exposed
thiophene ring and the deeply buried pyridine one can be substantially modified resulting
in an increase of the affinity of the complex with PAH. Instead, modifications of the central
pyrimidine ring may not be equally promising.

The thermodynamic profile of ligand binding gives clues on the interactions and
effects contributing to the observed stability of a protein/ligand complex, such as the
dominance of direct protein/ligand interactions (e.g., hydrogen bonds or van der Waals)
or of nonspecific protein or ligand desolvation (e.g., hydrophobic effect). In general, the
entropic optimization of ligands has proved easier to achieve than the enthalpic one due to
the difficulty of adding polar groups in the ligand structure at the appropriate distance and
orientation to establish strong interactions with the target [27]. The binding thermodynamic
profiles of IVPC and all thermostabilizing analogues (Figure 3) were obtained from isother-
mal calorimetric titrations of PAH (Figure S4). The thermodynamically favorable binding
of IVPC to PAH, reflected in its negative ∆Gb value, arises from favorable enthalpic and
entropic contributions. Although the PAH-IVPC complex involves the formation of two
hydrogen bonds between chaperone atoms and protein residues [12], most of the complex
stability results from the favorable entropic contribution. Thus, desolvation entropy seems
to drive IVPC binding. In the case of the analogues, the same binding scenario is observed:
both the entropy and the enthalpy components are stabilizing, but the entropic component
dominates, evidencing that complexes exhibiting a higher affinity that IVPC tend to benefit
from a larger entropic component than that of the IVPC complex.

2.5. Usefulness of AFEC for the Rational Design of Better PAH Binders

To validate the AFEC methodology implemented here, we compared the alchemically
calculated ∆∆Gb values for the IVx analogues (Table 2 and Figure 4) with those experimen-
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tally determined by ITC. As discussed above, S-alkylated analogues in the pyrimidine ring
gave rise to poorly reproducible MD trajectories and were excluded from the comparison.
The fitting in Figure 4, corresponding to the calculations done with the FeII-bearing enzyme,
are in fine agreement with the experimental data. This indicates that, having the X-ray
structure of a PC bound to the PAH active site, analogues can be designed, the affinity of
which can be accurately calculated using AFEC prior to chemical synthesis.
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corresponds to a linear fit. The fitting equation and the square Pearson coefficient of the fit are
also depicted.

This approach can save much synthetic effort by focusing on the synthesis and testing
of the more promising analogues. As the catalytic reaction mechanism of nonheme iron
pterin-dependent aromatic amino acid hydroxylases is not totally clear and the redox state
of the iron atom during the enzyme catalytic cycle changes [28], we also parameterized the
ion as FeIII coordinated to the catalytic triad. The AFEC relative binding energies obtained
for this alternative parameterization are compared to the experimental energies in Figure S5.
The agreement is clearly worse than that obtained with the FeII parameterization (see also
Figure S6). Thus, of the two binding models implemented in this work, the model with the
coordinated ferrous cation shows the best correlation with the experimental affinity data
obtained by the ITC measurement (Figure 4).

The consistency of this AFEC methodology, as implemented here on the PAH-IVx
complexes carrying FeII, was further tested by taking advantage of the energy relationships
that are implicit in the thermodynamic cycles shown in Figure 5. As the cycles show, the
transformation of IVPC into IVd can be split into that of IVPC into IVa plus that of IVa
into IVd (left branch) or, alternatively, into that of IVPC into IVb plus that of IVb into IVd
(right branch).
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with complexes parameterized with coordinated FeII are shown near the corresponding arrows.
Question marks indicate transformations for which the relative binding energies, ∆∆G IVa→IVd

b and
∆∆G IVb→IVd

b can be arithmetically obtained from the other alchemical data shown in the figure, in
addition to by performing the corresponding alchemical transformations.

Thus, by using the previously calculated ∆∆G IVPC→IVd
b , ∆∆G IVPC→IVa

b and
∆∆G IVPC→IVb

b values for the corresponding alchemical transformations of IVPC into IVa,b,d
(see Table 2), one can arithmetically anticipate that ∆∆G IVa→IVd

b and ∆∆G IVb→IVd
b should

have values of +2.25 ± 0.58 kJ/mol and −1.49 ± 1.16 kJ/mol, respectively. To check for
consistency of the overall methodology, we calculated those values from the corresponding
alchemical transformations using the same parameterization and AFEC protocol. The calcu-
lated values of +2.36 ± 0.69 kJ/mol and −1.38 ± 0.21 kJ/mol, respectively, show excellent
agreement with the values anticipated from the cycles (Figure 5). The good correlations
observed between the computational and experimental relative binding free-energy values
(Figure 4) and between the calculated values from the thermodynamic cycles expressions
(Figure 5) make it possible to propose this AFEC approach as a valuable tool to ease the
design of second generation PCs with improved affinity (better binders) for PAH. Con-
cerning derivatives of IVPC, the approach can be used to anticipate the change in affinity
upon introducing modifications in either the thiophene or the pyridine rings, but not in the
thioxo group of the pyrimidine ring. The approach is also expected to be useful to design
better binders to newly identified PAH ligands for which the X-ray structure in complex
with PAH becomes available.
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PCs may help recover the lost activity of a protein carrying a deleterious variation
(e.g., a single amino acid replacement) by different mechanisms. The classic chaperoning
mechanism consists in the PC binding to the native fraction of defective protein molecules,
making some of the unfolded ones to fold, as governed by the folding equilibrium constant.
To exert this effect efficiently, the higher the affinity of the PC for the native enzyme, the
better. This is particularly true of allosteric PCs [29], the activity of which is not expected to
be complicated by concomitant inhibition of enzyme activity but to be directly related to
binding affinity. In this respect, our approach demonstrates the great potential of AFEC as
a reliable design tool for raising the binding affinity of a PC for a protein when the structure
of its complex with the target protein is known. By calculating whether an analogue will be
either a better or a worse binder to the target protein, e.g., PAH, the collection of analogues
that have to be synthesized and then tested in cell or animal models can be significantly
narrowed, which is essential in order to reduce costs and time in the drug development
process, particularly when it is carried out in an academic setting. However, it should
be recalled that the chaperoning effect may be exerted through alternative mechanisms
such as modifying folding kinetics [12] or protecting the enzyme against inactivation [30].
It should be also remembered that PCs binding at active sites may behave as enzyme
inhibitors. This detrimental effect can be minimized through judicious dosing regimens [31].
On the other hand, effective in vitro chaperoning is a requirement that may or may not
translate into effective in vivo chaperoning, depending on the specific pharmacokinetics
and pharmacodynamics of each PC candidate. In a previous work, the lead IVPC was
shown to display its effect on PAH in both cell and animal models [11]. Functional studies
to test the chaperoning effect of this second generation of IVPC analogues are out of the
scope of this work, but their chaperoning effect will be tested in the future to assess the
impact of increasing the binding affinity of IVPC on the in vivo chaperoning potency and
PKU-variant specificity of the new compounds. As parent compound IVPC is a weak
competitive inhibitor of PAH [11], the new family of derivatives here described (some with
tighter and some with weaker binding) may help fine tune its chaperoning and inhibitory
effects on PAH.

3. Materials and Methods
3.1. Reagents and Chemicals

All reagents were of analytical grade and used as obtained from commercial sources.
Thiophenes 1 and 2 and pyridin-2-amines 5, 6, 10, 11 and 12 are commercially available
and were acquired from AK Scientific, Inc. The other compounds were synthesized. A
detailed description of the synthesis and characterization of all the compounds involved in
this work is reported in Supplementary Materials. All IVPC analogues were dissolved in
100% dimethylsulfoxide (DMSO) and stored frozen at −20 ◦C.

3.2. Parameterization of the Metal Center and IVPC Analogues, and Molecular Dynamics (MD)
Preparation Setup for the Alchemical (AFEC) Simulations

PAH is a tetrameric metalloenzyme carrying an iron atom per subunit. Prior to per-
forming MD simulations of the complexes between PAH and the different IVPC analogues,
the coordinated center including the iron ion and either compound IVPC or one out of
their analogues (IVx) was parameterized. Parameterization was done by following an ad
hoc methodology relying on a set of programs in the AmberTools18 package [32] (mainly
MCPB.py [33]). The coordinated metal center was modeled both with the iron ion with
charge 2+ (FeII) and 3+ (FeIII). The protein residues His285, His290 and Glu330 were
included in the Fe coordination sphere given the proximity (< 3.0 Å) of their side chain
coordinated atom (Nε2 in His, Oε2 in Glu) to the iron ion in the crystal structure of the com-
plex [12] (Figure S1b). The N-ter and C-ter atoms of those residues were capped by acetyl
(ACE) or N-methylamide (NME) moieties, respectively, before running Gaussian09 [34]
(DFT level: B3LYP/6-31G*) to minimize the systems. Then, force constants of the bonds
and angles were updated (Z-Matrix method [35]), and the Merz–Kollman charges [36]
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extracted and subsequently fitted by the RESP method [37] (see final charges in Table S1).
The parameters and charges obtained were then combined with those for the rest of the
protein, as taken from the Amber99SB force field [38].

On the other hand, IVPC and IVx analogues were parameterized by means of the DFT
function B3LYP/6-31G* (bonds and angles force constants updated), the General Amber
Force Field (GAFF) [39] was set for providing the remaining van der Waals (vdW) and
coulombic parameters for these compounds, and the Merz–Kollman charges [36] fitted
through the RESP method [37]. Since compound IVPC in complex PAH-IVPC appears
directly coordinated through the nitrogen N1 of the pyrimidine central ring [12], it seems
this nitrogen loses its hydrogen before coordinating the metal center (otherwise it may
impede proper coordination). How this occurs, either through a tautomeric mechanism
(passing this hydrogen to the 2-thioxo sulfur atom) or of a reduction inflicted by the iron
or another reducing agent, is unclear and not be addressed here. In this protocol, we thus
setup and parameterized compound IVPC and most of its analogues (the exceptions being
IVi, IVj, IVk, IVl and IVp, which are all neutral; see structures in Table 1) with an overall
charge of minus one (−1), which means that we removed the referred hydrogen atom from
nitrogen N1 on these compounds.

For the MD simulations, the compounds (IVPC and its analogues) and their corre-
sponding complexes (PAH-IVPC or PAH-IVx with either FeII or FeIII) were embedded in a
3 nm and an 8 nm diameter octahedral box, respectively, filled (solvated) with Tip3p [40]
water molecules and neutralized with Na+ counterions (when required). The preparation
phase was completed with the following sequence of steps: minimization, heating (NVT)
and equilibration (NPT). Namely, a 10,000-step steepest-descent minimization was run
and then the systems were heated to 300 K through a T-ladder (consisting in running
6 consecutive NVT steps of 50 ns each, with T constant over individual steps and increasing
50 K when passing to the next one, using the Berendsen thermostat [41]). This was followed
by a 200 ns NVT step (at the final simulation T of 300 K) that was performed to change
to the v-rescale thermostat [42], and by two NPT steps (1 atm), the first one a 250 ns step
with the Berendsen barostat [41] and the second one a 250 ns step with the Parrinello–
Rahman barostat [43–45]. A cutoff of 0.9 nm was set as the maximum radius to account
for short-range vdW and coulombic interactions. For the short-range vdW interactions, a
potential-shift-Verlet modifier was setup, while for the long-range vdW and electrostatics
interactions a PME scheme was implemented. ”All-bonds” restraints were applied (LINCS
algorithm [46]). In the AFEC productive phase (5 ns) Hamiltonian replica exchange molec-
ular dynamics (H-REMD) simulations [47–49] were performed to enhance conformational
sampling and ensure convergence when calculating alchemical free energies [50] for the
targeted PAH binders. Sixteen lambdas (see Table S2) were settled and optimized to turn
on/off the forces acting on the atoms being transmuted. The GROMACS 4.6.1 package [51]
was used to run all the MD simulations.

3.3. Alchemical Free Energy Calculation (AFEC)

Calculation of the relative alchemical binding free energies (∆∆Gb) of the targeted
IVx analogues versus IVPC in the PAH complex was implemented, as shown in Figure S1a.
AFEC transformations (IVPC→IVx) on solvated compounds enabled obtaining the ”sol-
vating” free energy (∆Gsolv), whereas the corresponding AFEC transformations on com-
pounds bound to the metal center in the complex allowed to extract the free-energy
change for the ”bound” state (∆Gbound). The later, ∆Gbound, was calculated both for
the systems setup with FeII and FeIII (Table S3), and the relative ”binding” free energy
(∆∆GIVPC→IVx

b = ∆GIVPC

b − ∆GIVx
b ) was then calculated Equation (1) subtracting the ”sol-

vating” free energy from the ”bound” free energy:

∆∆GIVPC→IVx
b = ∆GIVPC→IVx

bound − ∆GIVPC→IVx
solv (1)
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The multistate Bennet acceptance ratio (MBAR) method [52] was used to calculate the
(alchemical) free energy differences (“solvating” and ”bound”).

3.4. Expression and Purification of Human Recombinant PAH

Wild-type human PAH was recombinantly expressed in E. coli BL21 (DE3) cells, puri-
fied as described [12,25] and obtained as a tetramer. Essentially, the enzyme was overex-
pressed as a fusion protein with maltose-binding protein (MBP), purified to homogeneity
by affinity chromatography, cleaved from MBP, MBP removed in a second affinity step, and
PAH in its tetrameric form finally recovered after a molecular exclusion chromatography
step. Final fractions were analyzed by SDS-PAGE, and their concentration determined
spectrophotometrically using the theoretical molar extinction coefficient [53].

3.5. Fluorescence Thermal Denaturation Measurements

Thermal denaturation of PAH was monitored by tryptophan fluorescence emission
(λexc = 295 nm and λem = 345 nm), from 20 to 90 ◦C at a heating rate of 1 ◦C × min−1 on
a Cary Eclipse Fluorescence Spectrophotometer (Varian). PAH samples (2 µM monomer
concentration) in 20 mM Tris, pH 7.4, with 200 mM NaCl and 100 µM compound (either
IVPC or IVx) were prepared for differential scanning fluorimetry analysis. Compounds
were initially dissolved in 100% DMSO so that the final DMSO concentration in the samples
was 2.5% in all cases. Controls containing PAH (2 µM monomer concentration) and 2.5%
DMSO were included.

For simplicity, data analysis was performed by fitting each experimental fluorescence
curve to a two-state unfolding model, as described [54], using Equation (2):

F =

(
Fo

N + mN × T
)
+

(
Fo

U + mU × T
)
× e−∆G/(R×T)

1 + e−∆G/(R×T)
(2)

where F corresponds to the fluorescence intensity signal at a given temperature while(
Fo

N + mN × T
)

and
(

Fo
U + mU × T

)
represent the temperature-dependent fluorescence

signal of the native and unfolded states of the protein, respectively. Fo
N and Fo

U represent
the fluorescence signal of the native and unfolded protein at a reference T = 0 K, and mN
and mU are the slopes of their linear temperature dependencies. Furthermore, ∆G is the
unfolding Gibbs energy change, R is the universal gas constant and T is the temperature.

The fraction of unfolded protein (χU) was determined using Equation (3):

χU =
F−

(
Fo

N + mN × T
)(

Fo
U + mU × T

)
−

(
Fo

N + mN × T
) (3)

where the temperature of mid-denaturation, Tm, is the temperature at which half of the
protein molecules are in the unfolded state (χU = 0.5) and the other half are native. Thermal
shift (∆Tm) is calculated as the difference between the Tm values determined in presence
and absence of compound.

3.6. Isothermal Titration Calorimetry (ITC)

ITC measurements were carried out in an Auto-iTC200 (MicroCal, Malvern-Panalytical,
Malvern, United Kingdom) using carefully degassed ligand (IVPC or IVx analogues) and
PAH solutions. A 300 µM solution of IVPC or analogues dissolved in PBS, pH 7.4, was
titrated into PAH (20 µM monomer concentration) in the same buffer. Ligand solutions
were prepared from stock compound solutions in 100% DMSO, and all working solutions
contained the same residual DMSO concentration (2.5%). Binding titrations were performed
at 25 ◦C by successive injections of 2 µL ligand solution into the reference cell every 150 s,
with a stirring speed of 750 rpm. Thermodynamic parameters of the binding equilibrium
(the binding constant, Kb, the binding enthalpy change, ∆Hb, and the binding stoichiometry,
n) were calculated through nonlinear least squares regression analysis of the data, by using
a one-site binding model implemented in the MicroCal LLC ITC module from the Origin 7.0
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software package (OriginLab, Northampton, MA, USA). The binding Gibbs energy change,
∆Gb, the dissociation constant, Kd and the entropic component, −T × ∆S, were obtained
from basic thermodynamic relationships with the previously calculated thermodynamic
binding parameters [55].

4. Conclusions

AFEC makes it possible to anticipate the change in the affinity of the PAH-IVPC com-
plex upon modification of the chemical structure of the bound pharmacological chaperone.
Good correlations between calculated and experimental ∆∆Gb values are obtained by using
a model with a FeII parameterized iron ion coordinating the residues of the catalytic triad.
Based on this computational approach, a new generation of IVPC analogues was obtained
exhibiting improved binding affinity for the target enzyme, which translates into higher
PAH thermostabilization. AFEC, and the computational calculation of properties such as
those available using absorption, distribution, metabolism, excretion or toxicity predictors,
can play an important role in medicinal chemistry by guiding the early selection of the
more promising analogues, thereby reducing the time and cost required for their synthesis
and testing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23094502/s1.
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